OMRON

Machine Automation Controller NX-series

General Ethernet (TCP/IP) Connection Guide

OMRON Corporation
Auto Focus Multi Code Reader
V330-F / V430-F-series

Network

Connection

Guide

About Copyrights and Trademarks

Microsoft product screen shots used with permission from Microsoft.

Windows is a registered trademark of Microsoft Corporation in the USA and other countries.
ODVA, EtherNet/IP™ are trademarks of ODVA.

Sysmac and SYSMAC are trademarks or registered trademarks of OMRON Corporation in
Japan and other countries for OMRON factory automation products.

Company names and product names in this document are the trademarks or registered
trademarks of their respective companies.

Contents

1. Related Manuals............ccooimmmmiiiiniserrr s snnes 3
2. Terms and Definitions.........cccccevricciriiiccier i er e mr e ennns 4
3. Restrictions and Precautions..........ccccccoommmmrirccscccsccer s sseeee e 5
S © V1= 6
5. Applicable Products and Support TOOIScccccermmrrrrirriccccseeeereneensenns 7
5.1. Applicable Products..........oociii e 7
5.2. Device Configuration ... 8
6. Ethernet Settingscccccreiceiriiiccre i 1"
6.1. Ethernet Communication Settings........ccccvvveveeveiiciiie e 11
6.2. Example of Connection Check for Communications........................ 12
7. Connection Procedure..........ccoccoceeriicccerinssssesssssssessssssssesssssssessssssmssssnsnns 13
71. Operation FIOWuueeiiiiiiiieeeeee e 13
7.2. Code Reader SetUp...coco i 14
7.3. Controller SetUP ... e 19
7.4. Checking the Connection Status........cccccccveveeiciiee e, 24
8. Initializing the System ... 28
8.1. 1070131 i o] | 1= SO PPPRN: 28
8.2. (0700 [T 3 (Y- Lo = RS 28
9. ProJECt File... s 29
9.1. OVEBIVIEW ...t e e e e e e e e e e e e e e e e enaanes 29
9.2. Code Reader Command...........c.eeeeiieeiiiiiiiieeeee e 33
9.3. Error Judgment ProCessing.........cccuuveiiiieei i 35
9.4. Variables USEd.............uuuiiieiiiee e 37
9.5. Programs (ST LangQuage)ceeeeauereeeiiieeeeiiiea e et e e s eieee e eeeeee e 42
9.6. TIMING Chart ..o 58
9.7. oy (ol o o Tt 1= T] [o T 64

10. ReVision HiStory ... e 68

1. Related Manuals

1. Related Manuals

To ensure system safety, make sure to always read and follow the information provided in all

Safety Precautions and Precautions for Safe Use in the manuals for each device which is

used in the system.
The following OMRON Corporation (hereinafter referred to as “OMRON”) manuals are related
to this document:

Cat. No. Model Manual name

W535 NX Series NX-series CPU Unit Hardware User’s Manual

W593 NX Series NX-series NX102 CPU Unit Hardware User’s
Manual

W578 NX Series NX-series NX1P2 CPU Unit Hardware User’s
Manual

W501 NJ/NX Series NJ/NX-series CPU Unit Software User’s Manual

W506 NJ/NX Series NJ/NX-series CPU Unit Built-in EtherNet/IP Port
User’s Manual

W504 SYSMAC-SE20101] Sysmac Studio Version 1 Operation Manual

W502 NJ/NX Series Machine Automation Controller Instructions
Reference Manual

2432 V320-F/V330-F/V420-F/V430-F | MicroHAWK V320-F/VV330-F/V420-F/V430-F

Series Series Barcode Reader User Manual
2407 V320-F/V330-F/V420-F/V430-F | Autofocus Multicode Reader MicroHAWK

Series

V320-F/V330-F/V420-F/V430-F Series User
Manual for Communication Settings

2. Terms and Definitions

2. Terms and Definitions

Below is a list of terms used in this manual and their definitions.

Term

Description/Definition

IP Address

Ethernet uses IP addresses to achieve communications.

Each IP address (specifically, Internet Protocol address) identifies a
specific node (host computer, controller, etc.) on an Ethernet network,
IP addresses must be set and managed so that they are not duplicated.

Socket

A socket is an interface that allows you to directly use TCP or UDP
functions from a user program.

The NJ/NX Series Machine Automation Controller performs socket
communication using standard socket service instructions.

To use socket services, you need to establish a connection with a remote
node and disconnect it after use. In this document, processing for
establishing a connection is referred to as “socket open” or “TCP open”
and for disconnecting it as “socket close” or “close”.

You can use the socket services to send and receive arbitrary data to
and from the remote node.

Active and Passive

When you open a TCP socket connection with nodes, open processing is
executed for each node.

The method to open a connection differs depending on whether the node
is to serve as a client or server.

In this document, processing to open a connection as a server is referred
to as “passive open” and as a client is referred to as “active open” or
“active open processing”.

keep-alive Function

When a remote node (server or client) does not respond for a set period
of time or longer in TCP/IP socket services, the keep-alive function sends
a communications frame to the node to check the connection status.

If the node does not respond to it, the function performs this check at a
certain interval, and closes the connection if it does not respond to all
check frames.

linger function

This is a TCP socket option that sends RST data when the TCP socket is
closed. This enables immediate open processing using the same port
number, without waiting for the port to be opened.

If the linger option is not specified, the controller issues FIN data when
the TCP socket is closed and, after that, performs end control such as a
send data arrival check with the remote node for approximately 1 minute.
Therefore, TCP sockets with the same port number may not be used
immediately.

3. Restrictions and Precautions

Restrictions and Precautions

(1) Before building a system, understand the specifications of devices which are used in the
system. Allow some margin for ratings and performance, and provide safety measures
such as installing a safety circuit in order to minimize the risk in case of failure.

(2) To ensure system safety, make sure to read and follow the information provided in all
Safety Precautions and Precautions for Safe Use in the manuals for each device which is
used in the system.

(3) The user is encouraged to confirm the standards and regulations that the system must
conform to.

(4) Iltis prohibited to copy, to reproduce, and to distribute a part or the whole of this document
without the permission of OMRON Corporation.

(5) The information contained in this document is current as of April 2023.

It is subject to change for improvement without notice.

The following notations are used in this document.

Indicates a potentially hazardous situation which, if not avoided,

may result in minor or moderate injury, or may result in serious
A WARNING injury or death. Additionally, there may be severe property
damage.

Indicates a potentially hazardous situation which, if not avoided,
may result in minor or moderate injury, or property damage.

Caution

Precautions for Safe Use

Precautions on what to do and what not to do to ensure safe usage of the product.

IE' Precautions for Correct Use

Precautions on what to do and what not to do to ensure proper operation and performance.

@ Note

Additional information to read as required.
This information is provided to increase understanding or make operation easier.

Symbols

The filled circle symbol indicates operations that you must do.
The specific operation is shown in the circle and explained in text.
This example shows a general precaution for something that you must do.

()]

4. Overview

4. Overview

This document describes the procedures for connecting the OMRON code reader products
(V330-F/V430-F Series) to an NX Series Machine Automation Controller (hereinafter referred
to as the controller) via Ethernet and for checking their connections.

You can establish an Ethernet communication connection by understanding the setting
procedures and key points of setup through the Ethernet communication settings in the
project file prepared in advance.

In this project file, the Ethernet connection is checked by sending a read trigger command to
the code reader and receiving the read data from it.

Obtain the latest version of the Sysmac Studio Project File from OMRON in advance.

Name Filename Version

Sysmac Studio Compact Project File OMRON_V330_V430_NX_ETN(TCP)_V100. smc2 | Ver. 1.00

(Extension: smc2)

The purpose of this document is to describe the wiring methods, communication

settings, and setting procedures required to establish a connection for
communications with applicable devices. In addition, the program used in this
document is designed to check that the connection has been correctly
performed (connection check). Since the program is not intended for permanent
use on-site, full consideration is not given to functionality and performance.

When configuring an actual system, please refer to the wiring methods,
communication settings, and setting procedures described in this document to
design and create a program that meets your purpose.

5. Applicable Products and Support Tools

5. Applicable Products and Support Tools

I 5.1. Applicable Products
The applicable devices that are required to ensure a connection are as follows:

Manufacturer | Name Model Version
OMRON NX Series CPU Unit NX701-00000
NX102-0000 Same or later
NX1P2-0100000] version as

indicated in section
OMRON Code reader V330-FOOOOOOO-0o0d | 5.2,

V430-FOOOOOO0O-000

@ Note

This document describes the procedures for establishing the communication connection of
the device, and does not describe the operation, installation and wiring method of the device.
For details on the above products (other than communication connection procedures), please
refer to the instruction manual for the product or contact OMRON.

@ Note

From among the above applicable devices, this document uses the devices listed in section
5.2 for the connection check. When using devices that are not described in section 5.2, check
the connection according to this document.

IE' Precautions for Correct Use

The connection and connection check procedures described in this document use the
devices listed in section 5.2, from among the above applicable devices.

You cannot use devices with versions earlier than the versions listed in section 5.2.

To use models that are not listed in section 5.2. or versions that are later than those listed in
section 5.2., check the differences in the specifications according to their instruction manuals
before operating the devices.

5. Applicable Products and Support Tools

I 5.2. Device Configuration

The system components required for reproducing the connection procedures described in this
document are as follows.

» Configuration with V330-F

Switching V330-F064N12M-NNX
PC NX1P2-9024DT hub
(Sysmac Studio (Built-in EtherNet/IP Port) W4S1-05C
installed, OS: i '
Windows 10)
. 1 LAN cable Lemmmmeee LAN cable
(Connectto pPoE iniect (Connect to
p %“% LAN cable input side) oF fnjecior output side)
. 24 \VDC power supply
Manufacturer Name Model Version
OMRON NX Series CPU Unit NX1P2-9024DT Ver. 1.16
(Built-in EtherNet/IP Port)
OMRON Power Supply Unit NJ-PA3001
OMRON Switching hub W4S1-05C
OMRON Sysmac Studio SYSMAC-SE20oo Ver. 1.28
OMRON Sysmac Studio Project File OMRON_V330 V430 NX_ | Ver. 1.00

ETN(TCP) V100.csm2
--- PC (OS: Windows 10) ---

LAN cable (STP (shielded,
twisted-pair) cable of Ethernet

category 5 or higher)
OMRON Code reader V330-F064N12M-NNX Ver. 2.1.0
OMRON Power over Ethernet (PoE) single | Select one that can be -

port injector powered via Ethernet.

--- 24 VDC power supply ---

5. Applicable Products and Support Tools

+ Configuration with V430-F

Switching V430-FOOOM12M-SRX
PC NX1P2-9024DT hub
(Sysmac Studio (Built-in EtherNet/IP Port) W4S1-05C
installed, OS: e ooy

Windows 10)

Ethernet cable I/0 Cable
V430-WE-3M V430-W8-3M

o LAN cable
To— 24 VDC power supply 24 VDC power supply
Manufacturer Name Model Version
OMRON NX Series CPU Unit NX1P2-9024DT Ver. 1.16
(Built-in EtherNet/IP Port)
OMRON Switching hub W4S1-05C
OMRON Sysmac Studio SYSMAC-SE20oo Ver. 1.28
OMRON Sysmac Studio Project File OMRON V330 V430 NX_ | Ver. 1.00

ETN(TCP) V100.csm2
--- PC (OS: Windows 10) -

LAN cable (STP (shielded,
twisted-pair) cable of Ethernet

category 5 or higher)
OMRON Code reader V430-FOOOM12M-SRX Ver. 2.1.0
OMRON I/O Cable V430-W8-3M
OMRON Ethernet cable V430-WE-3M

--- 24 VDC power supply ---

El Precautions for Correct Use

Obtain the latest version of the Sysmac Studio Project File from OMRON in advance.
(Contact OMRON for information on how to obtain this file.)

@ Note

The configuration may not be reproduced if the system component models or versions differ.
Check your configuration and, if there is any difference in the models or versions, contact
OMRON.

@ Note

This document assumes that the USB is used to connect the controller. For information on
how to install the USB driver, refer to A-1 Driver Installation for Direct USB Cable Connection
in Appendices of the Sysmac Studio Version 1 Operation Manual (Cat. No. W504).

=

=

5. Applicable Products and Support Tools

Note

Refer to the Industrial Switching Hub W4S1 Series User Manual (0969584-7) for power
supply specifications that can be used for 24 VDC power supply (for the switching hub).

Note

Refer to the MicroHAWK V320-F/V330-F/V420-F/V430-F Series Barcode Reader User
Manual (Cat. No. Z432) for the power supply specifications that can be used for 24 VDC
power supply (for the code reader).

10

6. Ethernet Settings

6. Ethernet Settings

This section shows the specifications of the communication parameter settings, variable

names and other information provided in this document.

@ Note

This document and the project file only cover the operations that you can perform using the
settings and commands described in this section. To use communication settings that are not

described here, you need to modify the project file.

I 6.1. Ethernet Communication Settings

The settings required to perform Ethernet communications are as follows.

6.1.1. Communications Settings for Setting PC and Code Reader
This document assumes that you use the settings below to set the code reader using a setting

PC.
Parameter name Setting PC Code reader
IP address 192.168.188.100 192.168.188.2 (default)
Subnet mask 255.255.0.0 255.255.0.0 (default)
Gateway Blank (default) 0.0.0.0 (default)

* For the use cases in this document, setting the gateway is unnecessary because the devices

are connected within the same segment of the network.

6.1.2. Communication Settings for Ethernet Unit and Code Reader
It is assumed that you use the settings below to connect the Ethernet Unit and the code

scanner.

Parameter name

NX1P2-9024DT
(EtherNet/IP Port)

Code reader

IP address

192.168.188.1

192.168.188.2 (default)

Subnet mask

255.255.0.0

255.255.0.0 (default)

Gateway

0.0.0.0 (default)

Port number

(set by software part)

2001 (default)

* For the use cases in this document, setting the gateway is unnecessary because the devices
are connected within the same segment of the network.

11

I 6.2. Example of Connection Check for Communications

6. Ethernet Settings

This document assumes that you use a program in structured text (hereinafter, ST) language
to execute “socket open”, “send and receive”, and “socket close” from the controller to the

code reader.
The controller sends a “read trigger’ command to the code reader. The code reader sends the

read data back to the controller.

An overview of the operation is shown below.

Local
SrcData

Local
RecvData

CPU EtherNet/IP port Ethernet Code reader
Project file
................. G
ST |anguage program
l Socket open
i >
< «
Send data
Variable I
Send data - >
area Sends serial command.
<> (Read trigger
command) Reads code.
T
|
Read data
|
Receive data | <
area
Receives read data.
Socket close
> >
< <

12

7. Connection Procedure

7. Connection Procedure

This section describes the procedures for connecting the controller to an Ethernet network.
In this document, it is assumed that the controller and the code reader use the factory default
settings. For how to initialize the devices, refer to Section 8. Initializing the System.

I 7.1. Operation Flow

The procedures for connecting and setting up the controller via Ethernet are as follows.

“ 7.2. Code Reader Setup

v

7.2.1. Setting the Parameters

Y

7.3. Controller Setup

v

7.3.1 Starting the Sysmac Studio and
Loading the Project File

v

7.3.2 Checking Parameters and
Executing Build

v

7.3.3 Going Online and Transferring

the Project Data

Y

7.4. Checking the Connection Status

v

7.4.1. Executing the Project File and
Checking the Receive Data

IE' Precautions for Correct Use

Set up the code reader.

Set the parameters for the code reader.

Set up the controller.

Start the Sysmac Studio Automation Software and
load the Sysmac Studio Project File.

Check the setting parameters. Then, perform
program checks and build on project data.

Place the Sysmac Studio online and transfer the
project data to the controller.

Execute the transferred project file to check that
Ethernet communications work correctly.

Execute the project file and check that correct data
is written to controller variables.

Obtain the latest version of the Sysmac Studio Project File from OMRON in advance.
(Contact OMRON for information on how to obtain this file.)

13

I 7.2. Code Reader Setup

7. Connection Procedure

Set up the code reader.

IE' Precautions for Correct Use

Use a PC (personal computer) to set the parameters for the code reader.
Note that you may need to change the PC settings depending on the condition of your PC.

7.21. Setting the Parameters
Set the parameters for the code reader.

Set the IP address of your PC to 192.768.7188.700 and its subnet mask to 255.255.0.0.

4 [Using V330-F]
Switching hub

PoE injector V330-F064N12M-NNX
Connect the cord reader and the ~ W4S1-05C .__J_ ______
switching hub to the PoE injector ! !
with a LAN cable. - | !
LAN cable ! | LAN cable
[— 1
[Using V430-F] . %
- Ethernet cable
Connect the Ethernet connector V430-WE-3M Switching
of the code reader to the hub
switching hub with the Ethernet
cable. ~
)
Connect the 1/0 cable to the I/O _
connector and turn ON the 24 /O Ethernet | 24 VDC
VDC power supply. Connector | Connector | [arown 2avp— Power
Blue ov | | supply
* In this document, only the Red COM IN
power supply wires of the 1/0 Red Striped COM_OUT
cable are connected and White TRIG
checked. Be careful not to Black HOST_RxD
short-circuit any other wires. Purple HOST_TxD
Gray OUTPUT1
* Ground the shield wire as I/O Cable Gray striped OUTPUT2
needed. For more information V430-W8-3M Pink OUTPUT3
on grounding, please refer to Green DEFAULT
Grounding in Appendices of Yellow NEW MASTER
the MicroHAWK None (Shield)

V320-F/V330-F/V420-F/V430-
F Series Barcode Reader User
Manual (Cat. No. Z432).

14

7. Connection Procedure

2 Connect the PC to the switching
hub with a LAN cable. LAN cable

Connect 24 VDC power supply
(for the switching hub) to the =
switching hub.

24 VDC power supply

3 Set the IP Address of the PC.

For the IP address, enter General

192.168.188.100. For the You can get IP settings assigned automatically if your network supparts
this capability. Otherwise, you need to ask your network administrator

subnet mask, enter 255.255.0.0. for the appropriate [P settings.

() Obtain an IP address automatically

For how to open the screen
(®) Use the following IP address:

shown on the right in Windows

IP address: | 192 . 168 . 188 . 100 |
7, please refer to step 4.

Subnet mask: |255.255. 0 . 0 |

Default gateway: | . . . |

Obtain DMS server address automatically

(®) Use the following DNS server addresses:

Preferred DNS server: | . . . |

Alternate DMS server: | . . . |

[validate settings upon exit Fr—

Cance

4 (1) From the Windows Start Menu, select Control Panel — Network and Internet — Network
and Sharing Center.
(2) Click on Local Area Connection. The Local Area Connection Status Dialog Box is
displayed. Click Properties.
(3) In the Local Area Connection Properties Dialog Box, select Internet Protocol Version 4
(TCP/IPv4), and click the Properties Button.
(4) Click the OK Button.

B Start your browser and enter

http://192.168.188.2. & New Tab x +
“Google Chrome” is the
recommended browser. C (o’? 192.168.188.2]

15

7. Connection Procedure

6 When the WebLink startup
screen is displayed, go to step Version 2.1.0.4004
8.
If you cannot access by o m Ro n
WebLink, go to step 7.
WEBLINK
7 If the WebLink startup screen does not appear, it means that communications are not
established between the code reader and the PC. Please check the following.
* The code reader and the PC have a proper physical (cable) connection.
— Refer to steps 1 and 2 for checking the connection.
* The IP Addresses of the PC and code reader are set correctly.
— Refer to step 4 for setting the IP address of the PC.
For other measures that can be taken, please refer to When unable to access by WebLink in
Q&A in Appendices of the MicroHAWK V320-F/V330-F/V420-F/\VV430-F Series Barcode
Reader User Manual (Cat. No. Z432).
8 The WebLink screen appears. \Mc . . ;E.D; ?‘
\ ‘stm grsep P Run OMRON B %3
9 Click on the Setup Tab and, in
Read Cycle Sequence, set
Cycle to Triggered.
Read Cycle Sequence
e o]
Serial Trigger Character <SP>
| Trigger Delay 0 ps
| Timeout after 500 ms
10

select Advanced.

Click on the gear icon on the
upper right of the screen and Om Ron B E
]

7. Connection Procedure

11 The Advanced Settings Screen
appears.
Select the Communications
Tab and check the settings
shown in the red frame for
Ethernet.

To use the defaults, you do not
need to change the settings.

If you need to change the IP
address, for example when
connecting multiple code
readers, change the IP Address
setting as necessary.

Advancec Sottinac

Search for settings

Camers Setup) [Communications

Symbologies

V)

(] Symbol Quality

RS232 A

Baud Rate 115.2K
Parity None
Stop Bits One
Data Bits Eight

v Ethernet
Ethernet Enabled
IP Address 192.168.188.2
Subnet 255.255.0.0
Gateway 0.0.0.0
IP Address Mode Static
TCP Port 1 2001
TCP Port 2 2003
Search and Configure Mode Enabled
EtherNet/IP Enabled
EtherNet/IP Byte Swapping Disabled
PROFINET Disabled
PROFINET Byte Swapping Disabled

12 Click on the icon shown in the
red frame to save the settings to
the code reader.

OMmRON

13 Finally, check the version
number of the code reader.
Click on the gear icon on the
upper right of the screen and
select About WebL.ink.

| Restore Default Settings |

Activate Account Management..

About WebLink...

17

7. Connection Procedure

14 About WebLink is displayed,
so you can check the current
version of the code reader.

Please update the code reader
to the latest version if
necessary.

About WebLink

OMRON

W

EBLINK

2.1.0 Patch 4

Reader Model
Serial Number
Part Number

MAC ID

Sensor

Firmware

Boot

Browser
Operating System
Screen Resolution

Co

V430-F

3838476
7412-2000-1005-006
00:0B:43:3A:92:0C
1280x960 (SXGA)
35-9000097-2.1.1 Alpha 1
35-9000033-200RC 2
Chrome 101.0.4951.54
Windows 10

1920x1040

ntact Us Done

18

7. Connection Procedure

I 7.3. Controller Setup

Set up the controller.

7.3.1. Starting the Sysmac Studio and Loading the Project File
Start the Sysmac Studio Automation Software and load the Sysmac Studio Project File.
Install the Sysmac Studio and USB driver on the PC beforehand. In addition, connect the
PC and the controller with a USB cable, and turn ON the power supply to the controller.

1 Start the Sysmac Studio. B e —
Click Import.

* If a user account control dialog
box is displayed at startup,
select the option to start. .

P Sysmac Studio

Automation Software

i . . - - %= |
2 The Import file Dialog Box is e - -

« FAH by » JOTTHRIFAIL v\¢,| TOSTHNIFALOBEE P
displayed. Select the project file mEe RULLDALS— - 0 @
OMRON_V330_V430_NX_ETN BREAD I—"“ e = e

|®] OMRON_V430_NX_ETN(TCP)_V100.... | 2018/05/17 16:06 SMC2 J7-Jl 1,697 KB
(TCP)_V100.csm2 (Sysmac _EETTEE

Studio Project File) and click
Open.

* Obtain the latest version of the
Sysmac Studio Project File
from the OMRON website.

7 (ILE(N): OMRON_V430_NX_ETN(TCP)_V100.smc2

3 The OMRON_V430_ETN(TCP)
_V100 Project Window is
displayed.

The window consists of three
panes: “Multiview Explorer” on

the left side, “Edit Pane” in the Multiview Edit Pane Toolbox
center, and “Toolbox” on the Explorer
right side. T

19

7. Connection Procedure

Checking Parameters and Executing Build
Check the setting parameters. Then, perform program checks and build on project data.

1 Double-click Built-in A Configurations and Setup
EtherNet/IP Port Settings i EtherCAT
under Configurations and » 53 CPU/Expansion Racks
Setup — Controller Setup in the :

Multiview Explorer. e
L [Operation Settings

LA

» & Motion Control Setup

2 The Built-in EtherNet/IP Port
Settings Tab Page is displayed
in the Edit Pane.

¥ IP Address
Select TCP/IP, select the Fixed O Fixed setting

setting Option in IP Address, il 192 - 168 . 188 . 1
Subnet mask EERIS I 1|

and check that the settings are P —

as follows. : [] thain from BOGTP server.
IP Address: 192.168.188.1 @ Fix at the IP address obtained from BOOTP server.
» DNS
Subnet mask: 255.255.0.0

p Host Name - IP Address
Default gateway: . . .

¥ Keep Alive
Keep Alive @ Use © Do not use
Check that Keep Alive is set as Keep Alive monitoring time |JJNER] sec

Linger option) Do not specify) Specify
follows.

Keep Alive: Do not use
Linger option: Do not specify

¥ |IP Router Table

3 Double-click Task Settings [Event Settings
under Configurations and]
Setup in the Multiview Explorer. £ Data Trace Settings

20

7. Connection Procedure

4 The Task Settings Tab Page is
displayed in the Edit Pane.

—
Task Settings X

Select Program Assignment
Settings and confirm that

i [¥ Wm PrimaryTask
Primary Task is set to M PrimaryTa

Program name

Program0. N ——

B Select Check All Programs
from the Project Menu.

Project Controller Simulation Tool
Check All Programs F7
Check Selected Programs Shift+F7

Build Controller Fa
Rebuild Contraller

under the Edit Pane.
Confirm that 0 is shown for both
Errors and Warnings.

Doz aption Location

7 Select Rebuild Controller from Project Controller Simulation Tool

the Project Menu. Check All Programs F7

Check Selected Programs Shift+F7

Build Controller Fa
Rebuild Controller

A dialog box showing the
progress of conversion appears.

8 Inthe Build Tab Page, confirm
that 0 is shown for both Errors
and Warnings.

.i r | A
! | Descriptirs Location

21

7. Connection Procedure

7.3.2. Going Online and Transferring the Project Data
Place the Sysmac Studio online and transfer the project data to the controller.

1 Select Communications Setup o troller Simulation Teols Window Help

from the Controller Menu. ! c unications Setup...
Change Device
Cnline Ctrl+W
2 The Communications Setup 8 Communications Setup - o x

¥ Connection type

Dialog Box is displayed.
Make sure that the Ethernet

t connection via a hub
connection via a hub Optlon |S (@ St one memoa om mese

S S il ST AT
M Direct connection via Ethernet

selected in Connection type. B Remote connection via USB

B Ethernet connection via a hub

s
Also, enter 192.168.188.1 in |
Remote IP Address. =
ClICk On Ethernet ¥ Remote IP Address

communications Test and Specify the remote IP address

confirm that Communications e T T
is di I
test OK is displayed. :
¥ Options
Click OK. Kl Confirm the serial ID when geing online.

K Check forced refreshing when going offline.

¥ Response Monitor Time

Set the Response Monitor Time in the communications with the Controller.(1-3600sec)
Please set a sufficiently large value n connecting to the Controller via multiple networks, such as VPN connection.
ER—
0K Cancel
3 Select Online from the Controller Simulation Tools Window Help
Controller Menu. ! Communications Setup...

Change Device

A confirmation dialog box -
. COnline Ctrl+W
appears. Click Yes.

* The dialog box displayed
differs depending on the status
of the controller being used. N

The CPU Unit has no name.

SeIeCt.Yes to proceed Wlth the Do you want to write the project name [new_Controller_0] to the CPU Unit name? (Y/N)
operation. |

Sysmac Studic

* The serial IDs displayed vary
depending on the device.

22

7. Connection Procedure

Sysmac Studio

Senal ID not matched.

Project:
Mame: [new_Controller_0]
Senal ID: [K01-12514-7973]

Controller:
Mame: [new_Controller_0]
Seral ID: [RO1-18612-0816]

Do you want to continue the connection processing? (Y/N)

Yes I No

Sysmac Studio

Do you want to change the Serial ID in the project to the controller's Serial ID? (Y/N)
(It will be used at the ID check of next enline connection.)

ol

@ Note

Refer to Section 6 Online Connections to a Controller in the Sysmac Studio Version 1
Operation Manual (Cat. No. W504) for details on online connection to the controller.

4 When you are online, a yellow
border appears in the upper part
of the Edit Pane.

Multiview Explorer

B Select Synchronize from the L icoiniicniioakmiliindensmbialn
Controller Menu. I 1

Offline Ctr+5hift+W

Synchronize... Ctrl+ M

e —— — — —

6 The Synchronization Dialog Box
is displayed.
Confirm that the check box for
the data to transfer (i.e. NX1P2
on the figure on the right) is

Controller: Data Name

selected, and click Transfer to
Controller.

23

7. Connection Procedure

7 A confirmation dialog box Sysmac Studio

. Confirm that there is no problem if the controller operation is stopped.
a ppearS . CI | Ck Yes . The operating made will be changed to PROGRAM mode. Then, EtherCAT slaves will be reset and forced refreshing will
be cancelled.
Are you sure that you want to execute the transfer?(Y/N)

The Synchronizing Dialog Box
appears.

A confirmation dialog box
appears. Click Yes.

Sysmac Studic

Confirm that there is no problem if the controller operation is started.
The operating mode will be changed to RUN mode.

Do you want to continue?(Y/N)

8 Confirm that the synchronized
data is now shown in the text
color of Synchronized and the
following message is displayed:
The Synchronization process
successfully finished.

If there is no problem, click

Close.

* If synchronization fails, check
the physical connections and
redo the procedure.

I 7.4. Checking the Connection Status
Execute the transferred project file to check that Ethernet communications work correctly.

M Precautions for Correct Use

Before performing the following steps, confirm that the LAN cable is connected securely.
If it is not connected, first turn OFF the power supply to the device and then connect the LAN
cable.

7.4.1. Executing the Project File and Checking the Receive Data
Execute the project file and check that correct data is written to controller variables.

Precautions for Safe Use

Confirm the system safety before you execute the project file.
The connected devices may malfunction regardless of the operating mode of the unit,

resulting in injury.

24

7. Connection Procedure

41 This document uses the 2D code
shown in the right figure as an
example of reading.

Set the code reader to the
position where it can read the 2D
code in the right figure.

2 Confirm that the RUN mode is
shown in the Controller Status
Pane of the Sysmac Studio.

Controller Status

ONLINE & 192.16R.188.1
ERR/ALM @ RUN mode

If PROGRAM mode is shown, Tori (o MRS SSTT S S—T

select Mode — RUN Mode from !
I
the Controller Menu.
Offline
Synchronize...

Transfer...

Maode

1erMet/IP Device List

Ctrl+Shift+W

Ctrl+M

L RUN Mode...

A confirmation dialog box

) Sysmac Studic
appears. Click Yes.

Make sure a Controller startup will cause no problem.
Do you want to change to RUN Mode? (/M)

“I’E

MNo

3 Check that the controller is in a
Monitor state by the Monitor and
Stop Monitoring Buttons in the
Sysmac Studio toolbar. Monitor
The controller is in a Monitor E Stop Monitoring
state if the Monitor Button is
selected (not selectable) and the
Stop Monitoring Button is i
selectable, as shown in the

figure on the right.
* If the controller is in a Stop
Monitoring state, select

Offline

Synchronize...
Transfer...

Monitor from the Controller
Menu in the Sysmac Studio.

Mode

Monitor

Controller Simulation Tools

Window Help

Ctrl+ Shift+W

Ctrl+M

25

7. Connection Procedure

4 Select Watch Tab Page from the

View Menu.

View Insert Project Controller Simulation Tools

Multiview Explorer Alt+1
Project Shortcut View Alt+5hift+1
Toolbox Alt+2
Cutput Tab Page Alt+3
Watch Tab Page Alt+4

t Watch Tab Page(Table) Alt+5hift+4

B The Watch window Tab Page is
displayed under the Edit Pane.

Program name

| | Online value

new_Controller Program0.Input_Start False

‘0ooo

new_Controller 0 Program0.Output_ErrCode

6 Confirm that the variables shown
in the figure on the right are
listed in the Name column.

* If any of the required variables
are not listed, click Input Name
and add them.

* In the following description,
“ProgramQ” of the variable
names in the Name column is
omitted.

ProgramQ.Input_Start — Start of input
Program0.Output_ErrCode —> Error codes
Frogram.Cutput_SkiCmdsErroriD
Program0.Output_SkTcloseErrorlD TCP
ProgramO.Output_MErCode —— ¥ connection
Program{.Cutput_EtnTcpSta status
Program0.ETN_SendMessageset_instance.Send_Data
Program.0utput_RecviMess \

\ N\
N\ N

Receive data Send data

ProgramO.Local_Status

/

Program execution status

7 Click TRUE in the Modify
column of Input_Start.
The Online value of Input_Start
changes to True.
The program starts running and
the controller performs Ethernet
communications with the code
reader.

| Name [Online valuel Modify
Program(.Input_Start False TRUE FALSE

| Name [Online value! Modify I
Program@.Input_Start (| True FALSE I

7. Connection Procedure

8 When the communications have |Online valuel ~ Modify |
ended normally, the values of the Programd.Input Start l FALSE
error codes are 0.

The value of the TCP connection

status (Output_EtnTcpSta) is

_CLOSED.

* If the program ends with an
error, the error code will be
stored according to the error
that occurred. Refer to 9.7.
Error Processing for details on
error codes.

Program0.Output_ErrCode

Program0.0utput_SktCrndsErrorlD

Program0.Output_SkTcloseErrorD
Program0.Output MEmCode

Program0.Output_EtnTcpSta _ClLosep [b

In addition, the Online value of)

Name |Online value! Modify

Local_Status.Done indicating the | Pogranoiom s |

program execution status is False TRUE FALSE
True. If the program ends with an frue B
error, the value of
Local_Status.Erroris True.
* If you click FALSE for
Input_Start, the values of

Local_Status also change to

False TRUE FALSE

False. For more information,
refer to 9.6. Timing Chart.

O The response data received from Online value
Program0.Input_Start

the code reader is stored in

Program0.Output_ErrCode
Program0.Output_SktCmdsErrorlD
Program0.Output_SkTcloseErrorlD

Output_RecvMess.
(ETN_SendMessageSet_instanc
e.Send_Data is a send

Program0.Output MEmCode 0000 0000
Program0.Output_EtnTepSta _CLOSED

command.)
Specify and check the
referenced area in the Watch Tab

Program0.ETM_SendMessageSet_instaijjiies
12345678390ABCDETREL

Program0.Output_RecviMess

Page, as shown in the figure on

the right. Response Format
Read data

. . . A
* The receive data in the figure -~ N

on the right varies depending 112|3(4|5/6|7|8|9|0|A|B|C|D CR | LF

on your environment. \)

Footer

m

* For details on the command,
refer to 9.2.2. Command
Settings.

27

8. Initializing the System

8. Initializing the System

This document assumes that each device uses the factory default settings.
If you change their settings from the defaults, you may not be able to perform various setting
procedures as described.

I 8.1. Controller
To return the controller to its default settings, select Clear All Memory from Controller Menu
in the Sysmac Studio and proceed.

Clear All Memory — N 5

Clear All Memory

This function initializes the target area of destination Controller.
Confirm the area to initialize first, and press the OK button.

CPU Unit Mame: new_Controller_0
Modek: NX1P2-9024DT
Area: User Program
User-defined Vanables
Controller Configurations and Setup
Security Information
Settings of Operation Authonty (initialization at the next online)
NX units on CPU rack

B Clear event log

Cancel

I 8.2. Code Reader
For information on initializing the code reader, please refer to How to initialize the settings? in
Q&A in Appendices of the MicroHAWK V320-F/V330-F/V420-F/\VV430-F Series Barcode
Reader User Manual (Cat. No. Z432).

28

9. Project File

9. Project File

This section describes the details of the project file used in this document.

I 9.1. Overview
This section describes the specifications and functions of the project file used for connecting a
V330-F/V430-F Series Code Reader (hereinafter referred to as “code reader”) to a controller’s
built-in EtherNet/IP port (hereinafter referred to as “built-in EtherNet/IP port”).

“Project file” here refers to a Sysmac Studio Project File.

The project file contains the following data.

* Built-in EtherNet/IP port communication settings and program task settings

* Program and function blocks for socket communications

* Variable tables and data type definition of variables used in the ST language program

This project file uses the socket service function of the built-in EtherNet/IP port to execute the
“< >” (Read trigger) command on the code reader and judges whether it reaches the normal
end or error end.

In the project file, “normal end” means that TCP socket communications have ended normally.
On the other hand,“error end” means that TCP socket communications have ended with an
error.

The project file does not use the keep-alive and linger functions, which are TCP socket
options. Consider using them as needed when designing your application.

@ Note

We have verified in our test configuration that the project file enables communications for the
product versions and product lot used for evaluation.

However, we do not guarantee its operations where there are electrical noise or other
disturbances, or variations in the performance of the devices themselves.

@ Note

In the Sysmac Studio, if it is necessary to distinguish between decimal data and hexadecimal
data, add “Variable Type and #” to the beginning of the decimal data and “Variable Type, 16,
and #” to the beginning of the hexadecimal data. (Example: INT#1000 for decimal data,
INT#16#03E8 for hexadecimal data, etc. For DINT, “Variable Type and #” is not required.)

29

9. Project File

9.1.1. Communications Data Flow
This is the flow from issuing a TCP socket communications command from the built-in
EtherNet/IP port to the code reader and receiving response data from the code reader. The
project file executes a processing sequence of TCP open to TCP close in a continuous
manner. If response data is divided and arrives as multiple pieces of receive data, receive
processing will be repeated.

TCP Open Processing The built-in EtherNet/IP port issues a TCP open
request to the code reader to establish a TCP
connection.

v

Command Send The built-in EtherNet/IP port issues a send message

Processing that is set in the ST language program to the code
reader.

v

Response Receive The built-in EtherNet/IP port stores the response data

Processing received from the code reader in the internal memory
of the specified CPU Unit.

v

Close Processing The built-in EtherNet/IP port issues a close request to
the code reader to close the TCP connection.

* Depending on the code reader or the command used, response data may not be sent
after the command is received or response data may be sent immediately after a
connection is established. For this reason, this project file allows you to set whether or
not send/receive processing is required in the Ethernet Communications Sequence
Setting function block.

If Send only is set, response receive processing will not be executed. If Receive only is
set, command send processing will not be executed.

30

9. Project File

9.1.2. TCP Socket Communications Using Socket Service Instructions
This section provides an overview of function blocks for TCP socket services (hereinafter
referred to as “socket service instructions”) and the general movement of send and receive

messages.

@ Note

For details, refer to EtherNet/IP Communications Instructions in Section 2 Instruction
Descriptions of the Machine Automation Controller NJ/NX-series Instructions Reference
Manual (Cat. No. W502).

e TCP Socket Services Using Socket Service Instructions
This project file uses the following five standard instructions to implement socket
communications.

Name Function block Description

TCP Socket SktTCPConnect Connects to a TCP port on the code reader by

Connect active open.

TCP Socket SktTCPSend Sends data from the specified TCP socket.

Send

TCP Socket SktTCPRcv Reads data received from the specified TCP

Receive socket.

TCP/UDP Socket | SktClose Closes the specified TCP socket.

Close

Get TCP Socket | SktGetTCPStatus | Reads the status of the specified TCP socket.

Status The project file uses this instruction to check the
completion of receiving in receive processing
and to check the closed status in close
processing.

* The Socket obtained by the Connect TCP Socket instruction (SktTCPConnect:
SktTCPConnect_instance) is used as an input parameter for other socket service
instructions. The specifications of the data type structure _sSOCKET of Socket are as

follows.
Variable Name Description Data type Valid range :/r;ltba;
Socket Socket Socket _sSOCKET -—- -
Handle Handle Handle for UDINT Depends on -
sending/receiving data data type.
SrcAdr Source Local node address™ _SSOCKET_A | --- -
Address DDRESS
PortNo | Port No. Port number UINT 0 to 65535
IpAdr IP Address | IP address or host name™ | STRING Depends on
data type.
DstAdr Destination | Remote node address™ _sSOCKET_A | --- -
Address DDRESS
PortNo | Port No. Port number UINT 1 to 65535
IpAdr IP Address | IP address or host name™ | STRING Depends on
data type.

*1: “Address” refers to an IP address and a port number.
*2: DNS or Hosts settings are required to use a host name.

31

e Send and Receive Messages

9. Project File

Send message * ** ** * * ** o o o o o
Header Command data Footer
Controller Code reader
>
>
) L
<
Receive > L * o o * *x o o *x -
message
(Response) Header Response data Footer
Receive ** i *k *k *k *k *k ok ok Hox *x
message
(Error response) Header Response data (Error code) Footer

e Communications Sequence
The figure below shows the processing flow of TCP communications between the code
reader (server) and the controller (client).

Controller

(Client)

|

Open processing

Connection open request

Code reader
(Server)

Passive open

Active

14 \ 4

Connection open

Data send

Send data

Connection open

|

L

processing J

ACK (Acknowledge)

A

Next data send
processing

i

Send data

Data receive
request

Data send

ACK (Acknowledge)

request

A

Data receive
processing

i)

Close request

4

A
Next data send
request

P

A

4
)
Close processing |

| Close

'

32

9. Project File

I 9.2. Code Reader Command

This section describes the code reader command in the project file.

9.2.1. Command Overview
This project file uses the “< >” (Read trigger) command to trigger Ethernet communications
with the code reader. The code reader sends the read data back to the controller.

Command Description

<> Read trigger

+ Read string: 12345, Character (Delimited): Space, Preamble: None, Postamble: CRLF

External device]
Serial Trigger

command
|§ : HH Character notatiion | < >
'i| | Hex notatiion | 3C | 20 | 3E

[In Read Cycle Read result
Character notatiion [1 2 3 4 5 |CR| LF
Hex notatiion | 31 | 32 | 33 | 34 | 35 | OD | DA

@ Note

For more information, please refer to Change the Command that Executes Read in 3-2
Controlling Operation and Data Output with Serial (TCP) in the Autofocus Multicode Reader
MicroHAWK V320-F/V330-F/V420-F/V430-F Series User Manual (Cat. No. Z407).

33

9.2.2. Command Settings
This section describes in detail the settings of the “< >” (Read trigger) command.

e Send Data (Command) Settings
Send data is set by the function block SendMessageSet_instance.
Code Reader Specifications:

* The data is stored in ASCII code.

9. Project File

Variable Setting (Data format) Setting

Send_Header Send header (STRING[5]) “(None)

Send_Addr Send address (STRING[5]) “(None)

Send_Command | Send data (STRING[256]) f<>?

Send_Check Send check addition (STRING[5]) “(None)

Send_Terminate | Send terminator (STRING[5]) “(None)

Variable Setting (Data format) | Data Description

CONCAT(Send_Header, Used as send data for

s Send message Send_Addr, the SktTCPSend

end_Data Send_Command,

(STRING[256])

Send_Check,
Send_Terminate)

instruction
(SKtTCPSend_instance).

e Stored Contents of Receive Data (Response)
Receive data is stored as output receive data after a data check by the function block
ReceiveCheck_instance.
Code Reader Specifications:

* The data is stored in ASCII code.
Variable Setting (Data format) Description of storage area
Receive data)
Recv_Data Receive buffer
(STRINGJ[256])
Receive data Receive data storage area (Stores receive
Recv_Buff

(STRING[256])

buffer data as is.)

e Send and Receive Messages

3C 20 3E

Send message

<’ (K 5!

(Normal processing: Decoded string)

Receive

31 32 33 34

message

(Error processing)

Receive
message
(None)

oy 2 =Y &

34

9. Project File

I 9.3. Error Judgment Processing

This section describes error judgment processing in the project file.

9.3.1. Error Judgment in the Project File
In this project file, error judgment processing is executed for the following three types of

errors (1) to (3). Refer to 9.7.1. Error Code List for information on error codes.

Ctroller Code reader

Ethernet cable

V N 7
Y
(1)) (3)
(1) Communications error during TCP socket communications using socket service
instructions

An error that was detected by a program in TCP socket communications, such as a
communications hardware error, command format error, or parameter error, is judged as a
“‘communications error”. This judgment is made based on the socket service instruction
argument “ErrorID”.

(2) Timeout error during communications with the code reader
An error that occurred due to abnormal open, send, receive, or close processing that failed
to complete within the monitoring time is judged as a timeout error. This judgment is made
based on timer monitoring in the project file. Refer to 9.3.2. Time Monitoring Function for
information on time monitoring using the internal timers of the project file.

(3) TCP connection status error at end of processing
The project file uses a procedure in which the overall processing ends after the last close
processing is done, regardless of whether the open to receive processing steps have
ended normally or ended with an error. Therefore, judgment of whether close processing
has ended normally is made based on the TCP connection status variable TcpStatus in the
SktGetTCPStatus instruction. If there is an error in close processing, the next open
processing may not be executed correctly. Refer to 9.7.2. TCP Connection Status Error
Situation and Correction for information on how to correct a TCP connection status error.

35

9. Project File

9.3.2. Time Monitoring Function
This section describes the time monitoring function in the project file.
The monitoring time settings can be changed by using variables in the function block
ParameterSet.

e Time Monitoring Using Internal Timers of the Project File
Assuming that processing has the executing status and does not end due to an error, the
project file uses its internal timers to interrupted the processing (i.e., timeout). The timeout
is set to 5 s (default) for each processing phase from open to close.
Time Monitoring Using Internal Timers of the Project File

Processing | Monitoring description VLl e
name (default)
Open Time from start to end of open TopenTime After5s
processing | processing (UINT#500)
Send Time from start to end of send TsTime After5s
processing | processing (UINT#500)
Time from start to end of receive
Receive processing i After5s
: * If receive processing is repeated, the TfrTime
processing software ppart monitgrs theptime for each (UINT#500)
repetition of receive processing.
Time from start to end of close
processing
Close * The software part checks that the TCP TeloseTime After 5 s
processing connection status is normal after close (UINT#500)
processing to judge the end of the
processing.

e Time Monitoring Using the Built-in EtherNet/IP Port (Socket Service)
The built-in EtherNet/IP port has a time monitoring function for receive data that arrives in
segments, as a socket service. In receiving processing, it stores the TimeOut parameter of
the socket service instruction SktTCPRcv_instance to TrTime=UINT#3(300ms) (initial
value). The project file also sets the variable TrTime as the Receive Wait Time Monitoring
Timer for the next response receive wait time after completion of receiving a response. If
the next response from the code reader does not arrive within this time, it will be judged
that the receive processing has ended.

@ Note

For information on time monitoring using the socket service, refer to SktTCPRcv Instruction
in Section 2 Instruction Descriptions of the Machine Automation Controller NJ/NX-series
Instructions Reference Manual (Cat. No. W502).

e Resending and Time Monitoring Using the Built-in EtherNet/IP Port (TCP/IP)
If a communications error occurs, TCP/IP automatically resends the data and monitors the
processing time if there is no problem with the built-in EtherNet/IP port. If processing ends
with an error in the middle of it, the project file stops the resending and time monitoring via
TCP/IP in close processing. However, if the close processing shows a TCP connection
status error, the resending and time monitoring via TCP/IP may continue to be active in the
built-in EtherNet/IP port. Refer to 9.7.2. TCP Connection Status Error Situation and
Correction for information on the error situation and correction.

36

I 9.4. Variables Used

9. Project File

This section describes variables used in the project file.

9.4.1.

Lists of Variables Used

Below are lists of variables required in order to execute this project file.

e Input Variable

The following variable is used to manipulate the project file.

Variable name

Data type

Description

Input_Start

BOOL

Executes the project file when the value changes from OFF
(FALSE) to ON (TRUE). The value changes from ON to OFF

after the check of normal end or error end output.

e Output Variables

The following variables reflect the execution results of the project file.

Variable name

Data type

Description

Output_RecvMess

STRING[256]

Stores receive data (response). (An area of 256 words is

secured.)

Output_ErrCode

WORD

Stores the error result (flag) for a communications error or
timeout error detected during open processing, send
processing, receive processing, and close processing.

#0000 is stored when the processing ends normally.

Output_
SktCmdsErrorlD

WORD

Stores the error code for a communications error or timeout
error detected for each socket service instruction in open
processing, send processing, and receive processing.

#0000 is stored when the processing ends normally.

Output_
SkTcloseErrorlD

WORD

Stores the error code for a communications error or timeout
error detected for the SktTcpClose instruction in close
processing, aside from errors in open processing, sending
processing, and receiving processing.

#0000 is stored when the processing ends normally.

Output_EtnTcpSta

_eCONNECT!I
ON_STATE

Stores the TCP connection status when a communications

error or timeout error is detected in close processing.

_CLOSED is stored when the processing ends normally.

Output_MErrCode

DWORD

Stores the error code of an FCS calculation error or code
reader error detected as a result of receive processing.

#00000000 is stored when the processing ends normally.

37

e Internal Variables

9. Project File

The following variables are used only for the purpose of calculation in the project file.

Variable name Data type Description
Local_Status sStatus Program execution status
(STRUCT)
Busy BOOL Changes to TRUE when the project file is executed and to
FALSE when it is not executed.
Done BOOL Changes to TRUE when the project file ends normally and to
FALSE when Input_Start changes from TRUE to FALSE.
Error BOOL Changes to TRUE when the project file ends with an error
and to FALSE when Input_Start changes from TRUE to
FALSE.
Local_State DINT State Processing No.
Local_ErrCode uErrorFlgs Sets an error code.
(UNION)
Local_ErrCode. WORD Expresses the error code as WORD data.
WordData
Local_ErrCode. ARRAY[0..15] | « Communications error
BoolData OF BOOL BoolData[0]: Send processing: Error (TRUE)/Normal

(FALSE)

BoolData[1]: Receive processing: Error (TRUE)/Normal
(FALSE)

BoolData[2] Open processing: Error (TRUE)/Normal
(FALSE)

BoolData[3]: Close processing: Error (TRUE)/Normal
(FALSE)

BoolData[4]: Processing number: Error (TRUE)/Normal
(FALSE)

 Timeout error
BoolData[8]: Send processing: Error (TRUE)/Normal
(FALSE)

BoolData[9]: Receive processing: Error (TRUE)/Normal
(FALSE)

BoolData[10] Open processing: Error (TRUE)/Normal
(FALSE)

BoolData[11]: Close processing: Error (TRUE)/Normal
(FALSE)
* Others

BoolData[5]: Send/Receive required judgment error:
Error (TRUE)/Normal (FALSE)

BoolData[12]: Code reader error:

Error (TRUE)/Normal (FALSE)
BoolData[6..7],[13..14]: Reserved

BoolData[15]: Error occurred

38

9. Project File

Variable name Data type Description
Local_ExecFlgs sControl Socket service instruction execution flag
(STRUCT)
Send BOOL Send Processing instruction: Executed (TRUE)/Not executed
(FALSE)
Recv BOOL Receive Processing instruction: Executed (TRUE)/Not
executed (FALSE)
Open BOOL Open Processing instruction: Executed (TRUE)/Not executed
(FALSE)
Close BOOL Close Processing instruction: Executed (TRUE)/Not executed
(FALSE)
Status BOOL TCP Status instruction: Executed (TRUE)/Not executed
(FALSE)
Local_ UINT Sets the number of bytes of send data.
SrcDataByte
Local_SrcData ARRAY Send data storage area for SktTCPSend instruction
[0..2000] OF (SktTCPSend_instance). (An area of 256 words is secured.)
BYTE
Local_RecvData ARRAY Receive data (response) storage area for SkiTCPRcv
[0..2000] OF instruction (SktTCPRcv_instance). (An area of 256 words is
BOOL secured.)

Local_

ReceiveMessage

STRING[256]

Local_RecvData Received string data (response) storage

area. (An area of 256 characters is secured.)

Local_ BOOL Code Reader Error Judgment Instruction Execution Flag:
RecvCheckFlg Executed (TRUE)/Not executed (FALSE)
Local_ BOOL Initialization Normal Setting Flag
InitialSettingOK
Local_TONFIgs sTimerControl | Timer Execution Flag
(STRUCT)
Tfs BOOL Send Processing Time Monitoring Timer Instruction:
Executed (TRUE)/Not executed (FALSE)
Tfr BOOL Receive Processing Time Monitoring Timer Instruction:
Executed (TRUE)/Not executed (FALSE)
Topen BOOL Open Processing Time Monitoring Timer Instruction:
Executed (TRUE)/Not executed (FALSE)
Tclose BOOL Close Processing Time Monitoring Timer Instruction:
Executed (TRUE)/Not executed (FALSE)
Tr BOOL Next Response Receive Wait Time Monitoring Timer
Instruction: Executed (TRUE)/Not executed (FALSE)

39

9. Project File

Variable name

Data type

Description

Local_ComType

sControl
(STRUCT)

Sets whether or not send processing or receive processing is

required.

Send

BOOL

Send processing: Required (TRUE)/Not required (FALSE)

* If send processing is required, but receive processing is not
required:
The program will skip receive processing and go to close
processing without waiting for receive data in send
processing. Specify this value when response data is not

sent back to the command sent.

Recv

BOOL

Receive processing: Required (TRUE)/Not required (FALSE)
* If both send processing and receive processing are
required:
The program will wait for the arrival of receive data after
send processing. The program will go to receive processing
after checking the arrival of receive data. Specify this value

when response data is sent back to the command sent.

Error

BOOL

Send/Receive Processing Required Setting Error Flag (This

flag is set if there is a setting error.)

e Variables for Initializing Socket Service Instructions

Variable name Data type Description
NULL_SOCKET _sSOCKET Internal socket service instruction initialization data (Retain
constants: Enabled)
Initial value (Handle:=0, SrcAdr:=(PortNo:=0, IpAdr:="),
DstAdr:=(PortNo:=0, IpAdr:="))
(Used for all socket instructions.)
NULL_ ARRAYI0..0] Internal send socket service instruction initialization data
ARRAYOFBYTE_1 OF BYTE (Retain constants: Enabled)
Initial value [0] (Use for the SktTCPSend instruction)
NULL_ ARRAY[0..0] Internal receive socket service instruction initialization data
ARRAYOFBYTE_2 | OF BYTE (Retain constants: Disabled)

Initial value [0] (Use for the SktTCPRcv instruction)

40

9. Project File

9.4.2. Lists of Variables Used in User-defined Function Blocks/Functions
Below are lists of function blocks that must be user-defined in programs in order to execute
this project file.

For information on the following function block variables, refer to 9.5.3. Detailed
Explanation of Function Blocks.

Variable name Data type Description
ETN_ParameterSet | ParameterSet Ethernet settings (Remote IP address, etc.)
_instance Monitoring time from open processing to close

processing

ETN_SendMessage | SendMessageSet | Send/receive processing required setting and send

Set_instance message setting.
ETN_ReceiveCheck | ReceiveCheck Receive data storage and normal/error judgment
_instance
e Timers
The following timers are used in the project file.

Variable name Data type Description
Topen_TON_instance | TON Measures the monitoring time for open processing.
Tfs_TON_instance TON Measures the monitoring time for send processing.
Tfr_TON_instance TON Measures the monitoring time for receive processing.
Tclose_TON_instance | TON Measures the monitoring time for close processing.
Tr_TON_instance TON Measures the processing time for the next response

receive wait time.

9.4.3. Lists of System-defined Variables
Below are lists of variables required in order to execute this project file.

e System-defined Variables (External Variables)

Variable name Data type Description
_EIP_EtnOnlineSta BOOL Built-in EtherNet/IP port’'s communications status:
TRUE: Available, FALSE: Not available

@ Note

For information on system variables and communications instructions, refer to EtherNet/IP
Communications Instructions in Section 2 Instruction Descriptions of the Machine Automation
Controller NJ/NX-series Instructions Reference Manual (Cat. No. W502).

41

I 9.5. Programs (ST Language)

9. Project File

9.5.1. Functional Components of the ST Language Program
This project file is written in the ST language. The functional components of the project file

are as follows.

Category

Subcategory

Description

1. Communications
Processing

. Communications Processing Start

. Communications Processing
Status Flag String Clearing

1.3. Communications Processing

Executing Status

—
SN

Executes communications processing.

2. Initialization

2.1. Processing Time Monitoring Timer
Initialization

2.2. Socket Service Instruction
Initialization

2.3. Socket Service Instruction
Execution Flag Initialization

2.4. Processing Time Monitoring Timer
Execution Flag Initialization

2.5. Error Code Storage Area
Initialization

2.6. Processing Monitoring Time
Setting and Ethernet-related
Parameter Setting

2.7. Send/Receive Processing
Required Setting and Send Data
Setting

2.8. Send Data Conversion from String
to Byte Array

2.9. Receive Data Storage Area
Initialization

2.10. Initialization End Processing

Sets Ethernet parameters and initializes the
error code storage area.

Sets whether or not the send/receive
processing is required, send data, and
receive data.

3. Open 3.1. Open Processing Status Executes TCP open (active) processing.
Processing Judgment and Execution Flag Processing starts after communications
Setting processing is started and initial setup is
3.2. Open Processing Time Monitoring | done.
Timer Execution
3.3. Open Instruction Execution (TCP
Active Open Processing)
4. Send 4.1. Send Processing Status Judgment | Starts processing if the Send Processing
Processing and Execution Flag Setting Required Flag is set to Required and open
4.2. Send Processing Time Monitoring | processing has ended normally.
Timer Execution
4.3. Send Instruction Execution
5. Receive 5.1. Receive Processing Status Starts processing if the Receive Processing
Processing Judgment and Execution Flag Required Flag is set to Required and send
Setting processing has ended normally.
5.2. Receive Wait Time Monitoring If receive data arrives in segments, receive
Timer Execution processing is repeated.
5.3. Receive Processing Time Stores and checks the receive data.
Monitoring Timer Execution
5.4. Receive Instruction Execution
5.5. Get TCP Status Processing
Execution
5.6. Code Reader Error Judgment
Instruction Execution
6. Close 6.1. Close Processing Status Executes close processing.
Processing Judgment and Execution Flag Processing starts in the following cases.

Setting

6.2. Close Processing Time Monitoring
Timer Execution

6.3. Close Instruction Execution

6.4. Get TCP Status Processing
Execution

* Receive Processing Required Flag is set to
Not required and send processing has
ended normally.

* Receive processing ends normally.

» Open processing, send processing, or
receive processing ends with an error.

7. Processing Error

Processing

7. Processing No. Error Processing

Executes error processing if a non-existent
processing number is detected.

42

9.5.2.

9. Project File

Detailed Explanation of the Main Program
A detailed explanation of the project file is given below.
Communication settings that need to be changed depending on the code reader, send data
(command) settings, and receive data (response data) are checked in function blocks
(ETN_ParameterSet_instance, ETN_SendMessageSet_instance, and
ETN_ReceiveCheck_instance). For how to change the values of these settings, refer to
9.5.3 Detailed Explanation of Function Blocks.

Main Program: ProgramO

1. Communications Processing

(* Name: NJ Series Ethernet Communications Program *)
(* Function: Ethernet Communications Main Program)
(* Ethernet Unit: NX1P2-9024DT (Built-in EtherNet/IP Port))
(* Remarks:)

9)

(* Version Information: V1.00, Created August 1, 2011 %)

9)

(* (C)Copyright OMRON Corporation 2011 All Rights Reserved. B
(f===z %)

(* 1. Communications Processing *)

(* Variable Description: Communications Processing for Control ==)
()

(Input Start Flag : Input_Start)

()

(Communications Processing Status Flag String : Local_Status<STRUCT =)

)

~ Communications Processing Executing Flag (Busy) : Local_Status.Busy)

(

(

(Communications Processing Normal End Flag (Done) : Local_Status.Done)
(= Communications Processing Error End Flag (Error) : Local_Status.Error)
()

(State Processing No.: Local_State)

(10: Initialization)]

(11: Open Processing)

(12: Send Processing)

(13: Receive Processing)

(14: Close Processing)

(99: Processing No. Error Processing)

(

(* 1.1. Communications Processing Start
Starts communications processing when Input Start Flag is turned ON with Communications Processing Status Flag String cleared. *)
IF Input_Start AND
MNOT(Local_Status.Busy OR Local_Status.Done OR Local_Status.Error) THEN
Local_Status.Busy:=TRUE;
Local_State:=10; // Go to 10: Initialization.
END_IF;

(* 1.2. Communications Processing Status Flag String Clearing
Clears Communications Processing Status Flag 5tring if Input Start Flag is turned OFF when communications processing is not executed. *)
IF NOT(Local_Status.Busy) AND NOT(Input_Start) THEM
Local_Status.Done:=FALSE;
Local_Status.Error:=FALSE;
END_IF
(* 1.3. Communications Processing Executing Status
Executes processing according to State Processing No. (Local_State) *)
IF Local_5tatus.Busy THEN
CASE Local_State OF

43

2. Initialization

10; (* =========================-====c-s-ssso-o-sssooo-soso-o-ss---—s=---=-======== %)
(* 2. Initialization *)
(* = Executes various types of initialization and parameter setting for overall communications.)
(* » Sets send data and initializes receive data storage area.)
(f== ¥}

(* 2.1. Processing Time Monitoring Timer Initialization *)
Topen_TON_instance (In:=FALSE PT:=TIME#0ms);
Tfs_TOM_instance (In:=FALSE PT:=TIME#0ms);
Tr_TON_instance (In:=FALSE.PT:=TIME#0ms);
Tfr_TON_instance ({In:=FALSE,PT:=TIME#0ms);
Telose_TON_instance{ln:=FALSE,PT:=TIME#0ms);

(* 2.2. Socket Service Instruction Initialization *)

SKTCPConnect_instance(

Execute:=FALSE SrcTepPort:=UINT#0,DstTcpPort:=UINT#0,DstAdr="):

SKITCPSend_instance(

Execute:=FALSE Socket:=NULL_SOCKET,Size:=UINT#0,
SendDat:=NULL_ARRAYOFBYTE_1[0]):

SKtTCPRecv_instance(
Execute:=FALSE.Socket:=NULL_SOCKET,Size:=UINT#0,TimeOut:=UINT#0,
RevDat:=NULL_ARRAYOFBYTE_2[0])

SkTclose_instance(

Execute:=FALSE Socket:=NULL_SOCKET);

SktGetTCPStatus_instance(

Execute:=FALSE Socket:=NULL_SOCKET);

(* 2.3. Socket Service Instruction Execution Flag Initialization *)

(* Variable Description: Socket Service Instruction Execution Flag (for Execute Parameter) ================ J|
(]

(Socket Service Instruction Execution Flag String: Local_ExecFlgs<STRUCT>)
. 1

(| Send Instruction Execution Flag (SkiTCPSend) : Local_ExecFlgs.Send)}

(|Receive Instruction Execution Flag (SKtTCPRcv) : Local_ExecFlgs.Recy)

(| Open Instruction Execution Flag (SktTCPConnect) : Local_ExecFlgs.Open)

(F Close Instruction Execution Flag (SkTclose) : Local_ExecFlgs.Close)]

(L Get TCP Status Instruction Execution Flag)

((SktGetTCPStatus) : Local_ExecFlgs.Status)

|| :=FALSE:
Local_ExecFlgs.Recv:=FALSE;
Local_ExecFlgs.Open:=FALSE:
Local_ExecFlgs.Close:=FALSE;
Local_ExecFlgs.Status:=FALSE;

9. Project File

(* 2.4. Processing Time Menitoring Timer Execution Flag Initialization *)

(* Variable Description: Processing Time Monitoring Timer Execution Flags (for Input Parameters) ==============

()

(Processing Time Monitoring Timer Execution Flag String: Local_TOMFIgs<STRUCT>)
- ')

(FSend Processing Time Monitoring Timer Execution Flag (Tfs_TON): Local TONFIgs.Tfs)
(I Receive Processing Time Monitoring Timer Execution Flag (Tfr_TON): Local_TONFlgs.Tfr)
(| Open Processing Time Monitoring Timer Execution Flag (Topen_TON))

| * Local_TONFlgs.Topen)

(FClose Processing Time Menitoring Timer Execution Flag (Tclose_TOMN))

| : Local_TONFlgs.Tclose)

(“ Receive Wait Time Monitoring Timer Execution Flag (Tr_TON)]

((Next Message Wait Time) : Local_TONFlgs.Tr)

(

Local_TOMflgs. Tfs:=FALSE;
Local_TONflgs.Tfr=FALSE:
Local TOMflgs.Topen:=FALSE;
Local_TONflgs.Tclose:=FALSE:
Local_TOMflgs. Tr=FALSE:

(* 2.5. Error Code Storage Area Initialization *)
Local_ErrCode.WordData:=WORD#16#0000;
Qutput_ErrCode:=WORD#16#FFFF;
QOutput_MErrCode:=DWORD#16#FFFFFFFF:
Output_SktCmdsError|D:=WORD#16#FFFF;
QOutput_SkTcloseErrorlD:=WORD#16#FFFF:

(* 2.6. Processing Monitoring Time Setting and Ethernet-related Parameter Setting *)
ETN_ParameterSet_instance(
Execute:=TRUE)

44

(* 2.7. Send/Receive Processing Required Setting and Send Data Setting *)
ETN_SendMessageSet_instance(
Execute:=TRUE):
(* Send/Receive Processing Required Setting Error Judgment *)
(* <Variable Notes>
» Local ComType.Send: Send Processing Required Flag
> Local_ComType.Recv: Receive Processing Reguired Flag
> Local_ComType.Error: Send/Receive Processing Required Setting Error *)
Local_ComType.Send:=TestABit(ETN_SendMessageSet_instance.ComType,0);
Local_ComType.Recv:=TestABit(ETM_SendMessageSet_instance.ComType, 1)
Local_ComType.Error:=NCT(Local_ComType.5end OR Local_ComType.Recv):
IF Local_ComType.Error THEN
Output_ErrCode:=WORD#16#0020;
Local_InitialSettingOK:=FALSE;
ELSE
Local_lnitialSettingOK:=TRUE;
END_IF;

(* 2.8. Send Data Conversion from String to Byte Array *)
Local_SrcDataByte:=
StringTeAry(ETN_SendMessageSet_instance.Send_Data,Local_SrcData[0]);

(* 2.9. Receive Data Storage Area Initialization ™)
ClearString(Local_ReceiveMessage):
ClearString{Output_RecvMess):
Local_RecvCHMNo:=0;

Local_RecvDatalength:=0:
Local_ReceiveSize:=UINT#256;

(* 2.10. Initialization End Processing *)
IF Local_InitialSettingOK THEN

Local_State:=11; /{ Go to 11: Open Processing.
ELSE

Local_Status.Busy:=FALSE;

Local_Status.Erron=TRUE

Local_State:=0; // Go to 0: Communications Not Executed State.

END_IF;

9. Project File

45

9. Project File

3. Open Processing

11; (== %)
(* 3. Open Processing *)
(* » Connects to remote TCP port by active open. *)
(* == %)
(* «Variable Notes>

> Local_ExecFlgs.Open: Open Instruction Execution Flag
> Local_TONFIgs.Topen Open Processing Time Meonitoring Timer Execution Flag *)

(* 3.1. Open Processing Status Judgment and Execution Flag Setting *)

(* 3.1.1. Timeout Processing *)

IF Topen_TON_instance.Q THEN
Local_ErrCode.BoolData[10]:=TRUE:
Output_SktCmdsErrorlD:=WORD#16#FFFF;
Local_ExecFlgs.Open:=FALSE:

Local_TONflgs.Topen:=FALSE:
Local_State:=14; // Go to 14: Close Processing.

(* 3.1.2. Normal End Processing *)

ELSIF SktTCPConnect_instance.Done THEN
Local_ErrCode.BoolData[2]:= FALSE
Output_SktCmdsErrorlD:=WORD#16#0000;
Local_ExecFlgs.Open:=FALSE
Local_TONflgs.Topen:=FALSE;

(* «Variable Notes>

> Local ComType.Send: Send Processing Required Flag
> Local_ComType.Recv: Receive Processing Required Flag *)
IF Local_ComType.Send THEN

Local_State:=12; /{ Go to 12: Send Processing.
ELSIF Lecal_ComType.Recy THEN

Local_State:=13; // Go to 13: Receive Processing.
END_IF;

(* 3.1.3. Error End Processing *)

ELSIF SKtTCPConnect_instance.Error THEN
Local_ErrCode.BoolData[2]:=TRUE:
Output_SktCmdsErrorlD:=5ktTCPConnect_instance.ErroriD;
Local_ExecFlgs.Open:=FALSE:

Local_TONflgs.Topen:=FALSE:
Local_State:=14; // Go to 14: Close Processing.

(* 3.1.4. Open Instruction Execution Flag Setting and Timer Execution Flag Setting)
ELSE

Local_ExecFlgs.Open:=TRUE;

Local_TONflgs.Topen:=TRUE;
END_IF;

(* 3.2. Open Processing Monitoring Timer Execution *)
Topen_TON_instance(
In:=Local_ TONflgs.Topen,
PT:=MULTIME(TIME#10ms.ETN_ParameterSet_instance.TopenTime));

(* 3.3. Open Instruction Execution (TCP.Active Open Processing)
Executes Open instruction when built-in ETN is available (_EIP_EtnOnlineSta is ON).)
SKTCPConnect_instance(
Execute:=Local_ExecFlgs.Open AND _EIP_EtnOnlineSta,
SrcTepPort:=ETN_ParameterSet_instance.5rcPort,
DstTcpPort:=ETN_ParameterSet_instance.DstPort,
DstAdr=ETN_ParameterSet_instance.DstIPAddr);

46

9. Project File

4. Send Processing

12:(*
(* 4. Send Processing *)
(* = Sends data from specified TCP port. *)

(* <Variable Notes>
> Local_ExecFlgs.Send: Send Instruction Execution Flag
» Local TONFIgs.Tfs: Send Processing Time Menitoring Timer Execution Flag *)

(* 4.1. Send Processing Status Judgment and Execution Flag Setting *)

(* 4.1.1. Timeout Processing *}

IF Tfs_TON_instance.Q THEN
Local_ErrCode.BoolData[8:=TRUE;
OQutput_SktCmdsErrorlD:=WORD#16#FFFF:
Local_ExecFlgs.Send:=FALSE:
Local_TONflgs. Tfs:=FALSE:
Local_State:=14; // Go to 14: Close Processing.

(* 4.1.2. Normal End Processing *)
ELSIF SktTCPSend_instance.Done THEN
Local_ErrCode.BoolData[0]:=FALSE;
Qutput_SktCmdsErrorlD:=WORD#16#0000;
Local_ExecFlgs.Send:=FALSE:
Local_TONflgs.Tfs:=FALSE:
(* <Variable Notes>
> Local_ComType.Recv: Receive Processing Required Flag *)
Local_State:=5EL({Local_ComType.Recv,14,13); // Go to 13: Receive Processing.
// Go to 14: Close Processing.

(* 4.1.3. Error End Processing *)
ELSIF SktTCPSend_instance.Error THEN
Local_ErrCode.BoolData[0:=TRUE:
Qutput_SktCmdsErroriD:=
SktTCPSend_instance.ErrorlD;
Local_ExecFlgs.Send:=FALSE;
Local_TONflgs.Tfs:=FALSE:
Local_State:=14; // Go to 14: Close Processing.

(* 4.1.4. Send Instruction Execution Flag Setting and Timer Execution Flag Setting *)
ELSE

Local_ExecFlgs.Send:=TRUE:

Local_TONflgs. Tfs:=TRUE:
END_IF;

(* 4.2, Send Processing Time Monitoring Timer Execution *)
Tfs_TOM_instance(

In:=Local_TONflgs.Tfs,

PT:=MULTIME(TIME#10ms, ETN_ParameterSet_instance TfsTime));

(* 4.3. Send Instruction Execution

Executes Send instruction when built-in ETN is available (_EIP_EtnOnlineSta is ON). ®)
SKtTCPSend_instance(

Execute:=Local_ExecFlgs.Send AND _EIP_EtnOnlineSta,

Size:=Local_SrcDataByte,

Socket:=SktTCPConnect_instance.Socket,

SendDat:=Local_SrcData[0]);

47

5. Receive Processing

13:(* ===

(* 5. Receive Processing *)
(* » Reads receive buffer data from specified TCP socket.
(==
(* «Variable Notes>

> Local_ExecFlgs.Recv: Receive Instruction Execution Flag

> Local_ExecFlgs.Status: Get TCP Status Instruction Execution Flag

> Local_TOMFIgs.Tfr: Receive Processing Time Monitoring Timer Execution Flag

> Local_TONFIgs.Tr: Receive Wait Time Monitoring Timer Execution Flag

(Mext Message Wait Time) *)

(* 5.1. Receive Processing Status Judgment and Execution Flag Setting *)

(* 5.1.1. End of Receive Processing *)
IF Tr_TON_instance.Q THEN
Local_ExecFlgs.Status:=FALSE;
Local_TONflgs.Tfrn=FALSE;
Local_TONflgs.Tr=FALSE;

(* Receive Data Conversion from Byte Array to String *)
Local_ReceiveMessage:=
AryToString(Local_RecvData[0],Local_RecvDatalength);

(* Code Reader Error Judgment Instruction Execution Flag Setting *)
Local_RecvCheckFlg:=TRUE;

Local_State:=14; // Go to 14: Close Processing.

(* 5.1.2. Timeout Processing *)

ELSIF Tfr_TOMN_instance.Q THEN
Local_ErrCode.BoolData[8]:=TRUE;
Output_SktCmdsErrorlD:=WORD#16#FFFF;
Local_ExecFlgs.Recv:=FALSE:

Local_ExecFlgs.Status:=FALSE;
Local_TONflgs.Tfrn=FALSE;
Local_State:=14; // Go to 14: Close Processing.

(* 5.1.3. Normal End Processing *)
ELSIF SktTCPReov_instance.Done THEN
Local_RecvDatalength
:=Local_RecvDatalength+SktTCPRev_instance.RovSize;
Local_RecvCHMe:=Local_RecvDatalength:

Local_ExecFlgs.Recv:=FALSE;
Local_TONflgs.Tfrn=FALSE;
Local_TONflgs.Tr=TRUE: // Go to 5.1.5. Receive Data Read Processing.

(* 5.1.4. Error End Processing *)
ELSIF SkKtTCPRcv_instance.Error THEN;
Local_ErrCode.BoolData[1]:=TRUE;
Output_SktCmdsErroriDi=
SktTCPRecv_instance.ErrorlD;

Local_ExecFlgs.Recv:=FALSE;
Local_TONflgs.Tfr=FALSE;

Local_State:=14; // Go to 14: Close Processing.

(* 5.1.5. Receive Data Read Processing *)
ELSIF SktGetTCPStatus_instance.Done
OR SktGetTCPStatus_instance.Error THEN
Local_ExecFlgs.Status:=FALSE;

(* If there is data to read: Continues receive processing. *)
IF SktGetTCPStatus_instance.DatRevFlag THEN
Local_ExecFlgs.Recv:=TRUE;
Local_TONflgs.Tfr=TRUE;
Local_TONflgs.Tn=FALSE;
END_IF;
(* If there is no data to read:
« If no data is received, processes nothing and
executes Get TCP Status again in next cycle.
« If data is already received, monitors response wait time and,
if timeout occurs without next response,
reads already received data to end receive processing.

]

9. Project File

48

(* 5.1.6. Get TCP Status Instruction Execution Flag Setting and Timer Execution Flag Setting ®)
ELSE

Local_ExecFlgs.Status:=TRUE

Local_TOMflgs.Tin=TRUE:

(* Code Reader Error Judgment Instruction Execution Flag Initialization *)
Local_RecvCheckFlg:=FALSE;
END_IF;

(* 5.2. Receive Wait Time Monitoring Timer Execution (Next Response Wait Time) *)
Tr_TON_instance(

In:=Local_TONflgs.Tr,

PT:=MULTIME(TIME#100ms,ETN_ParameterSet_instance. TrTime));

(* 5.3. Receive Processing Time Monitoring Timer Execution *)
Tfr_TON_instance(
In:=Local_TOMflgs.Tfr,
PT:=MULTIME(TIME#10ms,ETN_Parameterset_instance. TfrTime));

(* 5.4. Receive Instruction Execution
Executes Receive instruction when built-in ETN is available (_EIP_EtnOnlineSta is ON). *)
SktTCPRcv_instance(
Execute:=Local_ExecFlgs.Recvy AMD _EIP_EtnOnlineSta,
Socket:=SktTCPConnect_instance.5ocket,
TimeQut:=ETN_ParameterSet_instance.TrTime,
Size:=Local_ReceiveSize,
RecvDat:=Local_RecvData[Local_RecvCHNa]):

(* 5.5. Get TCP Status Instruction Execution
Executes Get TCP Status instruction when built-in ETN is available {_EIP_EtnOnlineSta is ON). *)
SktGetTCPStatus_instance(
Execute:r=Local_ExecFlgs.Status AND _EIP_EtnOnlineSta,
Socket:=SktTCPConnect_instance.5ocket);

(* 5.6. Code Reader Error Judgment Instruction Execution *)

ETN_ReceiveCheck_instance(
Execute:=Local_RecvCheckFlg,
Recv_Buff:=Local_ReceiveMessage,
Recv_Data:=Output_RecvMess,
tLength:=Local_RecvDatalength,
ErrorlD:=Local_ErrCodeWordData,
ErrorlDEx:=Cutput_MErrCode);

9. Project File

49

6. Close Processing

14; (* == ¥)
(* 6. Close Processing *)
(* = Closes specified socket)
x

(

<Variable Motes>

> Local_ExecFlgs.Close: Close Instruction Execution Flag

> Local_ExecFlgs.Staus: Get TCP Status Instruction Execution Flag

> Local_TONFlgs.Tclose: Close Processing Time Monitoring Timer Execution Flag *)

(* 6.1. Close Processing Status Judgment and Execution Flag Setting *)

(* 6.1.1. Timeout Processing *)

IF Tclose_TON_instance.Q THEN

Local_ErrCode.BoolData[11]:=TRUE;
Output_SkTcloseErrorlD:=WORD#16#FFFF;
Local_ExecFlgs.Close:=FALSE;
Local_TONflgs.Tclose:=FALSE:
Local_ExecFlgs.Status:=FALSE;
Output_EtnTcpSta:=5ktGet TCPStatus_instance. TepStatus:
Local_ErrCode.BoolData[15]:=TRUE;
Output_ErrCode:=Local_ErrCode.WeordData:
Local_Status.Busy:=FALSE;

Local_Status.Error:=TRUE;

Local_State:=0; /{ Go to 0: Communications Mot Executed State.

(* 6.1.2. Nermal End Processing *)

ELSIF SkTclose_instance.Done THEN

Local_ExecFlgs.Status:=TRUE;

IF SktGetTCPStatus_instance.Done
OR SktGetTCPStatus_instance.Error THEN
Local_ExecFlgs.Status:=FALSE;

IF SktGetTCPStatus_instance TepStatus = _CLOSED THEN
Local_TONflgs.Tclose:=FALSE;
Output_SkTcloseErrorlD:=WORD#16#0000;
Output_EtnTcpSta:=5SktGetTCPStatus_instance. TepStatus;
Local_ExecFlgs.Close:=FALSE;

(* Processing Result Judgment for Overall Communications Processing *)
Local_Status.Busy:=FALSE;

(* Normal End of Communications Processing *)

IF Local_ErrCode WordData = WORD#16#0000 THEN
Local_Status.Done:=TRUE;
Local_ErrCode.BoolData[15]:=FALSE:

9. Project File

50

9. Project File

(* Error End of Communications Processing *)
ELSE

Local_Status.Error:=TRUE;

Local_ErrCode.BoolData[15]:=TRUE;
END_IF;
Output_ErrCode:=Local_ErrCode.WordData;

Local_State:=0; /{ Go to 0: Communications Not Executed State.

EMD_IF;
END_IF;

(* 6.1.3. Error End Processing *)

ELSIF SkTclose_instance.Error THEN
Local_ErrCode.BoolData[3]:=TRUE;
Output_SkTcloseErrorlD:=5SkTclose_instance.ErrorlD;
Local_ExecFlgs.Close:=FALSE:
Local_TONflgs.Tclose:=FALSE:
Local_ErrCode.BoolData[15]:=TRUE;
Output_ErrCode:=Local_ErrCode.WeordData;
Local_Status.Busy:=FALSE;
Local_Status.Error=TRUE;

Local_State:=0; // Go to 0: Communications Mot Executed State.

(* 6.1.4. Close Instruction Execution Flag Setting and Timer Execution Flag Setting *)
ELSE

Local_ExecFlgs.Close:=TRUE;

Local_TONflgs.Telose:=TRUE;

END_IF;

(* 6.2. Close Processing Time Monitoring Timer Execution *)
Tclose_TOM_instance(
In:= Local_TONflgs.Tclose,
PT:=MULTIME(TIME#10ms,ETN_ParameterSet_instance. TcloseTime));

(* 6.3. Close Instruction Execution
Executes Close instruction when built-in ETN is available (_EIP_EtnOnlineSta is ON). *)
SkTclose_instance(
Execute:=Local_ExecFlgs.Close AND _EIP_EtnOnlineSta,
Socket:=5ktTCPConnect_instance.5ocket);

(* 6.4. Get TCP Status Instruction Execution
Executes Get TCP Status instruction when built-in ETN is available (_EIP_EtnOnline5Sta is ON). *)
SktGetTCPStatus_instance(
Execute:=Local_ExecFlgs.5tatus AND _EIP_EtnOnlineSta,
Socket:=5ktTCPConnect_instance.5ocket);

7. Processing No. Error Processing

99; (" == ¥
(* 7. Processing No. Error Processing *)
(* = Error processing when non-existent state processing number is set *)
x

Output_ErrCode:=WORD#16#0010;
Local_Status.Busy:=FALSE;
Local_Status.Erron=TRUE;

Local_State:=0; /{ Go to 0: Communications Not Executed State.
ELSE
Local_State:=99; // Go to 99: Processing No. Error Processing.
EMD_CASE
END_IF;

51

9.5.3.

Detailed Explanation of Function Blocks
This project file uses the following function blocks.

9. Project File

In the printout of function blocks given below, data that is variable depending on the code

reader is shown in red frames.

Details of the ETN_ParameterSet_instance: Function Block (ParameterSet)
Instruction Name FB/FUN Graph[c ST expression
expression
Ethernet ETN_ParameterSet_instance
L (Execute, TfsTime, TrTime, TfrTime, ,
ParameterSet | Communications FB None) . S
Parameter Settings TopenTime, TcloseTime, SrcPort,
DstIPAddr, DstPort);
* In-out Variable Table
* Input
Harslle Dei Name Description Valid range | Unit i
name type value
Executes the function block
Execute BOOL Execute when the value changes from (?r? %Z?: > --- -
OFF (FALSE) to ON (TRUE). tvoe
(Always TRUE) ype.
* Output
Variable Data o . . Initial
name type Name Description Valid range | Unit value
Open Sets the monitoring time for open | Depends
TopenTime | UINT Monitoring | processing in increments of 10 on data - -—-
Time ms. type.
Send Sets the monitoring time for send | Depends
TfsTime UINT Monitoring | processing in increments of 10 on data - -
Time ms. type.
\I/?V(Zci:flve Sets the arrival standby time for | Depends
TrTime UINT o receive data in increments of 100 | on data - -
Monitoring
. ms. type.
Time
Receive Sets the monitoring time for Depends
TfrTime UINT Processing | receive processing in increments | on data -—-- -—--
Time of 10 ms. type.
Close Sets the monitoring time for Depends
TcloseTime | UINT Monitoring | close processing in increments on data - -
Time of 10 ms. type.
Source Depends
SrcPort UINT Sets the local port. on data - -—
Port No.
type.
. Depends
DstIPAddr STRING | Destination Sets the remote IP address. on code - -
[256] IP Address
reader.
Destination Depends
DstPort UINT Sets the remote port number. on code - -
Port No.
reader.
Busy BOOL Busy
Normal
Done BOOL End
Error BOOL Error End | Not used . . .
Error (Not used in this project.)
ErrorlD WORD .
Information
ErrorlDEx | DWORD | EMOF
Information

« Internal Variable Table: None

52

* Program
(*==================================z== %)
(* Name: NJ Series Ethernet Communications Parameter Setting Function Block *)

(* Function: Processing Monitoring Time Setting and Ethernet-related Parameter Setting *)

(*)

(* Applicable Devices: *)

(* Manufacturer: OMRON Corporation *)

(* Device Mame: Code Reader *)

(* Series/Model: V430-F Series *)

(* Remarks: *)

*)

(* Veersion Information: V1.00, Created November 30, 2018)

(*)

(* (C)Copyright OMRON Corporation 2018 All Rights Reserved. *}

(* Variable Description: Arguments and Return Valug ==)
()

(Argument Mame Data Type Description)

(- Input: Execute BOOL Execution Flag)

()

(- Qutput: TopenTime UINT Open Processing Monitoring Time)

(TfsTime UINT Send Processing Monitoring Time)]

(TrTime UINT Receive Wait Time Processing Menitoring Time)
(TirTime UINT Receive Processing Monitoring Time)

(TcloseTime UINT Close Processing Monitoring Time)

(SrcPort UINT Source Port No.)

(DstlPAddr UINT Code Reader |P Address)

(DstPort UINT Code Reader Port Mo.)

(Busy BOOL Mot Used)

(Done BOOL Mot Used)

(Error BOOL Mot Used)

(ErrorlD WORD Mot Used)

(ErrorlDEx DWORD Mot Used)

()

(- In-out: None)

()

(Return value: None)

()

(=============================sSS=S=S====S=sSSSSSSSSSSssSs=sSSssssS==s========3 %)

IF Execute THEN

(* Ethernet-related Parameter Setting *)

SrcPort:= UINT#0: L/ Source Port No
DstlPAddr= "192.168.188.2"; // Destination IP Address
DstPort:= UINT#2001; // Destination Port No.

(* Process Monitoring Time Setting: Max. Time from Start to End of Processing *)

TopenTime := UINT#500; // Open Processing Monitoring Time Setting: Setting Unit 10 ms <500 = 5 s>
TfsTime:= UINT#500; // Send Processing Menitoring Time Setting: Setting Unit 10 ms <500 = 55>
TfrTime:= UINT#500: // Receive Processing Monitoring Time: Setting Unit 10 ms 500 = 55>
TeloseTime:= UINT#500; // Close Processing Monitoring Time: Setting Unit 10 ms <500 = 5 s>

| (* Max. Wait Time between Packets for Response Reception in Multiple Packets (Receive Instruction)
and Max. Wait Time for Next Response (Receive Wait Time Monitoring Timer) *)
TrTime:= UINT#3; // Receive Wait Monitoring Time: Setting Unit 100 ms <3 = 300 ms>
END_IF;

RETURM;

53

9. Project File

e Details of the ETN_SendMessageSet_instance: Function Block (SendMessageSet)

. Graphic .
Instruction Name FB/FUN expression ST expression
Ethernet .
SendMessageSet | Communications FB None ETN_SendMessageSet_lnstance.
: (Execute, Send_Data, ComType);
Sequence Setting
* In-out Variable Table
* Input
Variable Data Initial
name type Name Description Valid range | Unit | value
Executes the function block
Execute BOOL Execute when the value changes from oDne Fc)jeart]: °
OFF (FALSE) to ON (TRUE). tvoe
(Always TRUE) ype.
* Qutput
HEnEElR DeiE) Name Description Valid range | Unit i1
name type value
Depends
Send Data STRING Send Data Sets the send command to the on data . .
- [256] code reader. type
Sets whether to execute send,
Communic receive, or send and receive
ComType BYTE ation Tvoe processing. 1t03 -—- -—-
yp 1: Send only, 2: Receive only,
3: Send and receive
Busy BOOL Busy
Normal
Done BOOL End
Error BOOL | ErrorEnd | Notused — S
Error (Not used in this project.)
ErrorlD WORD .
Information
ErrorlDEx | DWORD | B
Information
* Internal Variable Table
Variable Data L . . Initial
name type Name Description Valid range | Unit value
Send_ STRING | Send Depends
Send message header on data
Header [5] Header type
Code Depends
Send_Addr STRING Reader Code reader address on data -—- -—-
(]
Address type.
Send STRING Send command to the code Depends
— Send Data on data - -—-
Command | [256] reader ¢
ype.
Send_ STRING Send Send message check Depends
Check on data - -—-
Check [5] code
Code type.
Send STRING | Send . Depends
— . Send message terminator on data - -
Terminate [5] Terminator type

54

* Program

(* Name: NJ Series Ethernet Communications Send/Receive Sequence Setting Function Block *)
(* Function: Send/Receive Processing Required Setting and 5end Data Setting *)
(*)

(* Applicable Devices: *)

(* Manufacturer: OMRON Corporation *)

(* Device Name: Code Reader *)

(* Series/Model: V430-F Series *)

(* Remarks: *)

(*)

(* Version Information: V1.00, Created November 30, 2018 *)

*)

(* (C)Copyright OMRON Corporation 2018 All Rights Reserved. *}

(f==z====2 %

(* Variable Description: Arguments and Return Valug ==)
)

(Argument Mame Data Type Description)

(- Input: Execute BOOL Execution Flag)

()

(- Qutput: SendData STRING[256] Send Data)

(ComType BYTE Send/Receive Processing Required Setting)

(Busy BOOL Mot Used)

(Done BOOL Mot Used)

(Error BOOL Mot Used)

(ErrorlD WORD Mot Used)

(ErrorlDEx DWORD Mot Used)

()

(- In-out: None)

()

(Return value: None)

(

I
I
I
I
I
1"
I
1
I
I
I
I
1}
I
1
I
I
I
I
I
I
1
I
I
I
I
1}
I
I
I
I
1l
1}
I
I
I
I
I
1l
I
1
I
I
I
I
1l
I
1
I
I
I
I
I
1}
1
I
I
I
I
"
I
I
I
I
1l
1"
I
I
I
I
I
1l
I
[}
-

IF Execute THEN

(* Send/Receive Processing Required Setting *)
ComType:= BYTE#16#03; // 1: Send Only, 2: Receive Only, 3: Send and Receive

(* Send Data Setting *)
Send_Header:="; // Header
Send_Addr="; // Address
Send_Command:= "< = [/ Code Reader Command: Read Trigger
Send_Check:="; /f SUM Calculation
Send_Terminate:= "; // Terminator

(* Send Data Concatenation *)
Send_Data:=
COMNCAT(Send_Header,Send_Addr,5end_Command,5end_Check,Send_Terminate);
END_IF:

RETURN;

55

9. Project File

e Details of the ETN_ReceiveCheck_instance: Function Block (ReceiveCheck)

. Graphic .
Instruction Name FB/FUN expression ST expression
Et:r?]rmnﬁaications ETN_ReceiveCheck_instance
ReceiveCheck Recei FB None (Execute, Recv_Data, Recv_Buff,
eceive .
P . Error, ErrorlD, ErrorlDEXx);
rocessing
* In-out Variable Table
* Input
Variable Data L . . Initial
name type Name Description Valid range | Unit value
Executes the function block Depends
Execute BOOL Execute when the value changes from on data -—- -—-
OFF (FALSE) to ON (TRUE). type.
Receive Depends
tLength UINT Data Byte length of receive buffer data | on data - -
Length type.
* In-out
VENETD DEIE Name Description Valid range | Unit il
name type value
. Depends
Recv_Data STRING | Receive Receive data storage result on data - -
[256] Data i
ype.
. Depends
Recv_Buff STRING | Receive Receive data buffer on data - -
[256] Buffer ¢
ype.
Error Error code:
ErroriD WORD Information Code reader error = #16#1000 - --- -
FCS error = #16#2000
Error Error: code:
ErrorIDEx DWORD . FCS receive result/Code reader | --- - -
Information
error code
* Output
VENETD DEIE Name Description Valid range | Unit il
name type value
Busy BOOL Busy Not used . . .
Done BOOL Elo(rjmal (Not used in this project.)
n
Error BOOL Error End | Errorend — — —
* Internal Variable Table
VENETD DEIE Name Description Valid range | Unit il
name type value
Receive_ STRING | Receive FCS receive result of receive Depends
Check [5] FCS data on data -—- -—-
type.
Calc_ STRING | Receive FCS calculation result of receive Depends
Check [5] FCS data P
. on data - -
Calculation tvpe
Value ype.

56

* Program
(*== %)
(* Name: NJ Series Ethernet Communications Receive Processing Function Block *)

(* Function: Receive Data Storage and Receive Processing Result Judgment *)

*)

(* Applicable Devices: *)

(* Manufacturer: OMRON Corporation *)

(* Device Name: Code Reader *)

(* Series/Model: V430-F Series *)

(* Remarks: *)

*)

(* Version Information: V1.00, Created November 30, 2018 *)

*)

(* (C)Copyright OMRON Corporation 2018 All Rights Reserved. *}
(*== %)

(* Variable Description: Arguments and Return Value
()
(Argument Name Data Type Description]
(- Input: Execute BOOL Execution Flag)
tlength UINT Receive Data Length)
)
+ Qutput: Busy BOOL Not Used)
Done BOOL Mot Used)
Error BOOL Error Flag)
)
-Input/Output: Recv_Data STRING[256] Receive Data Storage Area)
Recv_Buff STRING[256] Receive Buffer)
ErrorilD WORD Error Code)
ErrorlDEx DWORD FCS Receive Result or Code Reader Error Code)

Return value: None)

ke laiaieiaieleleke el e

IF Execute THEN
(* CheckSUM Judgment: Mot Required *)

(* Stores Receive Buffer Data in Receive Data Storage Area *)
Recv_Data:= Recv_Buff:

(* Code Reader Error Judgment *)
(* V430 Does Mot Return Error Responses in Serial (TCP) Communications *)

Error= FALSE; // Error Flag Reset

ErrorliD:= WORD#16#0000; /f Error Code Clear

ErrorlDEx:= DWORD#16#00000000; // Code Reader Error Code Clear
END_IF;

RETURN;

57

] 9.6. Timing Chart

9. Project File

The timing chart for the ST language program is shown below.

Start and Setup

Input_Start _l

1
Local_Status. }

BoolData[0](Busy) _l
|

Send data :D(—

Control data j —

Common
*kkk
parameters :P<

|
Receive data j 0000

Output_sktCmds —|

ErrorlD j(0000

Local_Status.
BoolData[1](Done)
or Local_Status.
BoolData[2](Error)

If Input_Start is changed from True (ON) to False (OFF) during execution, Normal End or Error

End is output for one cycle after processing is completed as shown below.

Input_Start

Local_Status.
BoolData[0](Busy)

Local_Status.

(1) Normal state

(2) Error state

£ 1 £ f]
e

\4
[] Output for 1 cycle

BoolData[1](Done)

Local_Status.

BoolData[1](Error)
Output_SktCmdErrorID

Output_MErrCode

.
1
: e
; Output for 1 cycle ; -
#0000 >é:::}><
#0000 XXX

58

e Open Processing

Input_Start

SktTCPConnect
_instance.Execute _l—‘i

Topen_TON
_instance.Q

SktTCPConnect 1
_instance.Busy _,‘\I—Vl_l—

SktTCPConnect
_instance.Busy

SktTCPConnect
_instance.Done

SktTCPConnect

_instance.Error

SktTCPConnect
_instance.ErrorlD 3(0000

Local_ErrCode.b[2]
Open processing error

Output_sktCmds

ErrorlD

0000

SktTCPSend

_instance.Busy - - - ____]

(Normal End)

Input_Start

SktTCPConnect
_instance.Execute

Topen_TON
_instance.Q

SktTCPConnect

_instance.Busy _|

SktTCPConnect
_instance.Busy

SktTCPConnect

_instance.Done _.—:_ ________
1

SktTCPConnect
_instance.Error

SktTCPConnect
_instance.ErrorID

Local_ErrCode.b[10]
Timeout

Output_ErrCode

SktClose
_instance.Busy

—1_

I
!
1
T
1
1
: 1
| 1
L L
! 1

I
| 1

____J_________________r _________

1
(0000

0000

(Timeout)

Input_Start

SktTCPConnect
_instance.Execute

Topen_TON
_instance.Q

SktTCPConnect
_instance.Busy

SktTCPConnect
_instance.Busy

SktTCPConnect
_instance.Done

SktTCPConnect
_instance.Error

SktTCPConnect
_instance.ErrorlD

Local_ErrCode.b[2]
Open processing error

Output_SktCmds
ErroriD

SktClose

9. Project File

-

)

*

0000

*kkk

X

R (U I (N N [N

_instance.Busy - _____________.1)

(Error End)

59

9. Project File

e Send Processing

_instance.Error

_instance.Error

--=

SktTCPConnect e SktTCPConnect -,
_instance.Done -! :n. ______________________ _instance.DoNe -1 b oo oo
} 1
SktTCPSend SktTCPSend !
_instance.Execute _instance.Execute _I—li
1 1 I 1
Tfs_ TON | [Tfs_ TON | !
_instance.Q 1 ' _instance.Q : 1
1 | 1
SktTCPSend ' : SktTCPSend I '
_instance.Busy Jl—l_ni _instance.Busy _l—‘:i
1
SkiTCPSend | v SKITCPSend | !
_instance.Done —1 : : :
1
SKITCPSend 1 SKiTCPSend 1 v
1
: :
1
v

SktTCPSend —
_instance.ErrorlD _X 0000

SktTCPSend —S< S
_instance.ErrorlD __A_0000 X__

Local_ErrCode.b[8] !

Local_ErrCode.b[8]

|—’ _instance.Done
1
1
1
1
1
1
1
T
1
1
1
1
1
1
1
1

Timeout Timeout
1
1
Output_sktCmds Output_sktCmds 0000 X' *dek
ErrorlD 0000 ErrorlD :
SktTCPRcv | AP . SktClose ':' """""""
instance.BuSy - -----=-----~--- : _instance.Busy - 4
(Normal End) (Error End)

SktTCPConnect - -

_instance.Done -t p-cooooomoooo .
1

SktTCPSend

_instance.Execute

|

Tfs_TON
_instance.Q

SktTCPSend REETEEEEN
_instance.Busy | 1

R

1

]

SktTCPSend 1
_instance.BUSY - 4--—o—--- oo

1

1

]

SktTCPSend
_instance.Done

SktTCPSend
_instance.Error

SktTCPSend —¥,
_instance.ErrorlD __X_0000

A
Local_ErrCode.b[8])
Timeout

Output_ErrCode v
0000 X 0100

SktClose = femmmmmmmmoooo-
_instance.Busy - - -_____]

60

9. Project File

e Receive Processing

SktTCPSend

SKtTCPSend - _instance.Done - - - __________

_instance.Done —t oo oo, SktGetTCPStatus —
! _instance.DatRcvFlag

SktGetTCPStatus |
SktTCPRcv
_instance.Execute m

instance.DatRcvFlag
r_TON_instance.Q !
TON .

N
\
1
1
b
1 1 . .
: SKITCPRev Receive standby time
t _instance.Busy
1
Y i SKITCPRev

}
SKtTCPRcv |
_instance.Execute

I
Tfr_TON_instance.Q :
Tr_TON_instance.Q !

|

SktTCPRcv

1
1
_instance.Busy _|‘> . _instance.Busy - - - _______ b e
1, v 1
SKITCPRov lgr----p 01 c-ooes SKTCPRoy ——
_instance.Busy —-4-—" 7, Lo p-—_a o _instance.RevDat '
A 1
SktTCPRcv
SK{TCPRov ———2 i instance.Done [
_instance.RcvDat : 0000 X : X - '
SKtTCPRcv 1 | _ SKITCPRev !
instance.Error 1 1 _instance.Error T
_ . T T |
v v ~ SK{TCPRev '
SktTCPRev instance.ErrorlD 0000 X 0000
_instance.ErrorlD :X 0000 -) i
Local_ErrCode.b[9] '
Local_ErrCode.b[9] Timeout L
Timeout 1
Output_sktCmds 0000 1
Output_sktCmds 5000 ErroriD :
ErrorlD SktClose | S
instance.Busy —----_______ :
(Repetition) (Normal End)

SktTCPSend --,
_instance.Done -1 p---ooooo ..

1

SktGetTCPStatus —l—‘—
_instance.DatRcvFlag

1

SKtTCPRcv ¢
_instance.Execute _l—‘i

1
Tfr_TON_instance.Q |
Tr_TON_instance.Q :
1

SktTCPRcv
_instance.Busy _l‘\—,"l—

SktTCPRcv —
_instance.RcvDat 10000

SktTCPRcv
_instance.Done

SktTCPRcv
_instance.Error

SktTCPRcv
_instance.ErrorlD j(0000 X

Hkkk

Local_ErrCode.b[9]

Timeout
Output_sktCmds
ErrorlD 0000 :X il
1
SktClose | 2SS

_instance.Busy - _________ .

(Error End)

61

SktTCPSend

_instance.Done -+ |

SktGetTCPStatus
_instance.DatRcvFlag

SktTCPRcv
_instance.Execute

=)

I e

SktTCPSend -,

9. Project File

_instance.Done -+ ;oo _________.

SktGetTCPStatus
_instance.DatRcvFlag

SktTCPRev | F—————=

_instance.Execute

1 1
1 . 1
Tfr_TON N Tfr_TON_instance.Q 1
instance.Q : || i |_|
1 | 1
SKITCPRev | oo SKTCPRev 1 |
1 1 . _——
_instance.Busy _I I ! _instance.Busy toy -i ______
1 |==-=-=--- RS —
SKTCPRoy | ! | SKITCPRcv ! ! !
instance.Busy --.:-_______I_ ________ :_ _____ _instance.Busy --..--------:. ________ :. _____
- 1 ! 1 1 ' !
SKTCPRov — oo : ! __ SKTCPRey i wos ! :
_instance.RcvDat : : : _instance.RcvDa : : :
SKITCPRovV 1 : | SKITCPRev 1 ! :
instance.Done :—: ________ L. _instance.Done :—:. PR
1 1
SKITCPRov 1 ' - SKTCPRev ! | I
instance.Error _:—: ________ ar _instance.Error — . _______ Joe___.
- | 1 1 :
SktTCPRcv — : ~ SKITCPRcv — 4 555 :
_instance.ErrorlD _X¥0000 ! _instance.ErrorlD Xw !
1
! Local_ErrCode.b[9]
Local_ErrCode.b[9] — .
Timeout !_l Timeout !_l
1
1
Output_sktCmds |
Output_sktCmd | —
D 0000 X__ F301 ErrorlD 0000 X__FFFF
1
1
SktClose Y SktClose | AU

_instance.Busy

_instance.Busy

(Timeout: Receive error) (Timeout: No receive data)

SktTCPSend
_instance.Done

I

SktGetTCPStatus
_instance.DatRcvFlag

SktTCPRcv
_instance.Execute

Tfr_TON_instance.Q
Tr_TON_instance.Q

4-+---

SKITCPRev Receive standby time

_instance.Busy

SktTCPRcv

_instance.RcvDat

SktTCPRcv
_instance.Done

1
|
[
1
SktTCPRcv :
1
1
1
1
1
1
1

SktTCPRcv I_l
_instance.Error |
1
SktTCPRcv !
_instance.ErrorID 0000)Q 0000
[}
Local_ErrCode.b[12] i—l
Code reader error !
[}
Output_MErrCode
puL 0000 ;X -
1
|
SktClose Y.

_instance.Busy

(Code reader error)

62

9. Project File

e Close Processing

SktTCPRcv oo
_instance.Done, etc. _t p---oooooooooooo_.
. SkiClose SKITCPRev 11
_instance.Execute —I—‘i _instance.Done, etc. j------cooooooooo.

Tclose TON | I
_instance.Q 1 : SktClose _l—\—
SktClose I ! _instance.Execute
1
_instance.Busy ﬂi

1
1, N Tclose_TON |
SkiClose | ey 3! _instance.Q —
_instance.Busy __ /™ £h ! !
- r
SktClose
_instance.Done— i
1 I N
SktClose 1 SkiClose f4r----1)

_instance.Error__,

_instance.Busy -- - L

SktClose —Y,
_instance.ErrorID:X 0000 SktClose

T__T_ ------------ SktClose
I _instance.Busy J\—‘yli
1
1
1
1
I
T
1

_instance.Done

|
1
SktGetTCPStatus X
_instance.Execute v SkiClose :
SkiGetTCPStatus ,‘T_l ! instance.Eror | N
_instance.Busy \ : - ! .
A & SktClose L
SktGetTCPStatus N rrr
instance.Done _instance.ErrorlD 3(0000 X '
— . ¥y 1
SktGetTCPStatus - Local_ErrCode.b[3] '
instance.TcpSta XXX X :CLOSED Close processing error 1
- 1
Closgeal_Errode.bl3) : Local_ErrCode.b[11] :
P ¢ ! Timeout !
Local_ErrCode.b[11] | .
Timeout : Output_skTclose 5000 'X —
Output_skTclose 0000 : ErrorlD {
ErrorlD
fror v Output_Stat.b[0] ---- -------*
Output_Stat.b[0] -------=--=----+ :
(Busy) -
(Busy) |
(Normal End) (Error End)

SktTCPRcv -

H _instance.Done, etc. o Fommmmmm
FB_Rcv.Done, etc. _i

1 SktClose _l—\—
SktClose —l—\— _instance.Execute

_instance.Execute

1
1 Tclose_TON | n
Tclose_TON : |_| _instance.Q : |
i 1
_instance.Q : ! SkiClose ! !

f

SktClose _’—I'""'"". _instance.Busy —"s ;
_instance.Busy | SkiClose 1

1
'
N~
[

1
i L T, ---
1 ' ! _instance.Busy ___:’_‘,' [S
SktClose 1 M M h !
instance.Busy - - - --__ P R SkiClose ! H
I ' ' _instance.Done '
SkiClose ! i i i !
_instance.Done — ' ________ [I - SktClose |_|
1 ' ; _instance.Error]
SktClose | I i SkiClose —_! !
)) '
—instance.Error _i—r """" bt _instance.ErrorlD 3(0000 |
1 1
SktClose —i 1 1
. | SktGetTCPStatus
_instance.ErroriD —W_0000 | instance. TcpSta XXXX Xi # CLOSED
Local_ErrCode.b[3] : Local_ErrCode.b[3] i_l
Close processing error : Close processing error]
1
1
Local_ErrCode.b[11] l—l Local_ErrCode.b[11] !
Timeout ! Timeout |
1 1
| Output_skTclose
Output_ErrCode 0000 X 0800 ErrorlD 0000 Ix FFFE
[vy
Output_Stat.b[0] ----------3 .
Output_Statb[0] ----------Y vpusE (0] '
\ (Busy) e
(Busy) L.
(Timeout) (Status Error)

63

I 9.7. Error Processing

9. Project File

9.7.1. Error Code List

This section lists error codes that can occur during the execution of the ST language

program.

e TCP Connection Status Error (Output_EtnTcpSta)
If the TCP connection status does not return to the normal state (. CLOSED) within the
specified time after close processing, the TCP connection status code is set in the variable
Output_EtnTcpSta. (If close processing ends with an error, the variable is checked

together.)

Error code enumerator
[_ eCONNECTION_STATE]

Description

CLOSED Connection closed (Normal state)
_LISTEN Waiting for a connection
_SYN SENT SYN sent in an active state
_SYN RECEIVED SYN sent and received
_ESTABLISHED Connection established
_CLOSE WAIT Waiting for a finish after FIN received
_FIN WAIT1 Finished and FIN sent
_CLOSING Finished and FIN exchanged Waiting for FIN acknowledgment (ACK)
_LAST ACK FIN received and finished Waiting for FIN acknowledgment (ACK)
_FIN WAIT2 FIN acknowledgment (ACK) received Waiting for FIN
:TIME WAIT Waiting for a silence of twice the maximum segment lifetime (2 MSL) after

a finish

64

9. Project File

e Error Codes (Output_SktCmdsErrorID, Output_SkTcloseErroriD)
If an error occurs in open processing, send processing, or receive processing, the error
code is set in the variable Output_SktCmdsErrorlD before execution of close processing.
If an error occurs in close processing, the error code is set in the variable
Output_SkTcloseErrorID and the processing ends. The table below shows the main error
codes.

(O: Open processing (SktTCPConnect instruction), S: Send processing (SktTCPSend
instruction), R: Receive processing (SktTCPRcv instruction), C: Close processing (SktClose

instruction), o: Applicable processing)

Error code O | S | R | C | Description
#16#0000 o o | o o | Normal end
#16#0400 ° o o | - An 'input par'ameter for an instruction exceeded the valid range for
an input variable.
#16#0407 N o | The calculation result of the instruction exceeded the valid range
for the data area for output parameters.
#16#2000 o | -~ | == | --- | The instruction was executed with a local IP address setting error.
The instruction failed to resolve the address of the remote node
#16#2002 o | == | =] - . o .
with the specified domain name.
The instruction was not executed in appropriate state.
» SktTCPConnect instruction
The TCP port specified by the input variable SrcTcpPort is
already open.
The remote node specified by the input variable DstAdr does not
exist.
The remote node specified by the input variables DstAdr and
DstTcpPort is not waiting for a connect request.
» SktTCPRcyv instruction
The specified socket is in receive processing.
A connection is not established for the specified socket.
» SktTCPSend instruction
The specified socket in send processing.
A connection is not established for the specified socket.
#16#2006 -—- | - | o | - | Atimeout occurred for the socket service instruction.
#16#2007 — | o | o o | The handle specified in the socket service instruction is invalid.
The instruction was executed in excess of the resources available
#16#2008 o o | o o . L .
for simultaneously executable socket service instructions.
#16#FFFF o | o | o o | The instruction ended before completion of the execution.

#16#2003 o | o o |-

@ Note

For details, refer to A-1 Error Codes That You Can Check with ErrorID and A-2 Error Codes
in Appendices of the Machine Automation Controller NJ/NX-series Instructions Reference
Manual (Cat. No. W502).

@ Note

For the details and corrections of the built-in EtherNet/IP port, refer to 8-7 Precautions in
Using Socket Services in Section 8 Socket Service of the Machine Automation Controller
NJ/NX-series CPU Unit Built-in EtherNet/IP Port User’s Manual (Cat. No. W506).

65

9. Project File

e Error Flags (Error End, Timeout) (Output_ErrCode)
If open, send, receive, or close processing ends with an error or times out, an error flag is
set in the variable Output_ErrCode, and an error code is stored in the variable
Output_SktCmdsErrorID or Output_SkTcloseErrorID.
(If close processing ends with error or times out, the TCP connection status error variable
Output_EtnTcpSta is also checked together.)

(O: Open processing (SktTCPConnect instruction), S: Send processing (SktTCPSend
instruction), R: Receive processing (SktTCPRcv instruction), C: Close processing (SktClose
instruction), o: Applicable processing)

Error flag (0] S R C | Description

#16#0000 o o o o Normal end

#16#0001 o Send processing ended with an error

#16#0002 o Receive processing ended with an error

#16#0004 o Open processing ended with an error

#16#0008 o Close processing ended with an error

#16#0100 o Send processing not completed within specified time

#16#0200 Receive processing not completed within specified time

o (This includes cases where response to be received was

not received.)

#16#0400 o Open processing not completed within specified time

#16#0800 o Close processing not completed within specified time

#16#0010 Processing number error

#16#0020 Send/Receive required judgment error

#16#1000 Code reader error

#16#2000 Code reader FCS (checksum) error

#16#8000 o o o o Error occurred

* Each error flag stores the sum of error flag values detected in each processing.

e Code Reader Error Codes
If the receive data from the code reader is error data, an error code is stored in the variable
Output_MErrCode.

Error code Description
#16#00000000 | Normal End
#16#FFFFFFFF | Not executed

66

9. Project File

9.7.2. TCP Connection Status Error and Correction
This section describes the situation and corrections if a TCP connection status error
occurs.

e Effect of a TCP Connection Status Error
If, after the occurrence of a TCP connection status error, you execute the project file again
without taking any corrective action or without noticing the error, the following error may
occur: The remote node specified by the input variable DstAdr (Destination Address) or
DstTcpPort (Destination Port) is not waiting for a connect request. (Hereinafter, this error is
referred to as “open processing error”.) This is considered as the effect of the TCP
connection status error at the end of the previous communications processing. Refer to
9.7.1 Error Code List for details of errors that occurred.

e Situation When a TCP Connection Status Error Occurs
Both a TCP connection status error after close processing and an open processing error in
the next communications processing due to the effect of the TCP connection status error
can occur because the close processing has not completed in the code reader. In this
situation, despite that the controller has ended all processing steps (up to close
processing) in the project file, it has not received the close completion notification from the
code reader (i.e., the completion of the close processing in the code reader is not
confirmed).

e Correction
Check whether the communications port of the code reader is closed since the close
processing may not be completed in the code reader. As a result, if the communications
port of the code reader is not closed or its state cannot be confirmed, the communications
port must be reset. To reset the communications port of the code reader, you can use
software restart or turn OFF and then ON the power supply. For details, refer to the manual
for the code reader.

IE' Precautions for Correct Use

Reset the communication port of the code reader after confirming that it is not connected to
another device.

e Situation When a TCP Connection Status Error Occurs in the Controller (Built-in
EtherNet/IP Port)
When a TCP connection status error occurs, the project file has ended its processing, but
resending and time monitoring by the built-in EtherNet/IP port (TCP/IP function) may be
active, as described in Resending and Time Monitoring Using the Built-in EtherNet/IP Port
(TCP/IP) in 9.3.2. Time Monitoring Function. However, this resending will stop under the
following situations, so there is no particular need to consciously stop it.
* The project file is executed and an open processing request is issued again.
* A communications problem such as cable disconnection is resolved during resending.
* Resend processing is ended by the TCP/IP time monitoring (timeout) function.
* The controller is restarted or turned OFF.

67

10. Revision History

10. Revision History

Revision Code

Revision Date

Revised Page and Reason

01

April 2023

First Publication

68

OMRON Corporation Industrial Automation Company

Kyoto, JAPAN Contact : www.ia.omron.com

Regional Headquarters

OMRON EUROPE B.V. OMRON ELECTRONICS LLC

Wegalaan 67-69, 2132 JD Hoofddorp 2895 Greenspoint Parkway, Suite 200

The Netherlands Hoffman Estates, IL 60169 U.S.A.

Tel: (31) 2356-81-300 Fax: (31) 2356-81-388 Tel: (1) 847-843-7900 Fax: (1) 847-843-7787
OMRON ASIA PACIFIC PTE. LTD. OMRON (CHINA) CO., LTD.

438B Alexandra Road, #08-01/02 Alexandra Room 2211, Bank of China Tower,
Technopark, Singapore 119968 200 Yin Cheng Zhong Road,

Tel: (65) 6835-3011 Fax: (65) 6835-2711 PuDong New Area, Shanghai, 200120, China

Tel: (86) 21-5037-2222 Fax: (86) 21-5037-2200

Authorized Distributor:

©OMRON Corporation 2023 All Rights Reserved.
In the interest of product improvement,
specifications are subject to change without notice.

Cat. No. Z429-E1-01 0423

	Machine Automation Controller NX-series General Ethernet (TCP/IP) Connection Guide Auto Focus Multi Code Reader V330-F / V430-F-series
	1. Related Manuals
	2. Terms and Definitions
	3. Restrictions and Precautions
	4. Overview
	5. Applicable Products and Support Tools
	5.1. Applicable Products
	5.2. Device Configuration

	6. Ethernet Settings
	6.1. Ethernet Communication Settings
	6.1.1. Communications Settings for Setting PC and Code Reader
	6.1.2. Communication Settings for Ethernet Unit and Code Reader

	6.2. Example of Connection Check for Communications

	7. Connection Procedure
	7.1. Operation Flow
	7.2. Code Reader Setup
	7.2.1. Setting the Parameters

	7.3. Controller Setup
	7.3.1. Starting the Sysmac Studio and Loading the Project File
	7.3.2. Going Online and Transferring the Project Data

	7.4. Checking the Connection Status
	7.4.1. Executing the Project File and Checking the Receive Data

	8. Initializing the System
	8.1. Controller
	8.2. Code Reader

	9. Project File
	9.1. Overview
	9.1.1. Communications Data Flow
	9.1.2. TCP Socket Communications Using Socket Service Instructions

	9.2. Code Reader Command
	9.2.1. Command Overview
	9.2.2. Command Settings

	9.3. Error Judgment Processing
	9.3.1. Error Judgment in the Project File
	9.3.2. Time Monitoring Function

	9.4. Variables Used
	9.4.1. Lists of Variables Used
	9.4.2. Lists of Variables Used in User-defined Function Blocks/Functions
	9.4.3. Lists of System-defined Variables

	9.5. Programs (ST Language)
	9.5.1. Functional Components of the ST Language Program
	9.5.2. Detailed Explanation of the Main Program
	9.5.3. Detailed Explanation of Function Blocks

	9.6. Timing Chart
	9.7. Error Processing
	9.7.1. Error Code List
	9.7.2. TCP Connection Status Error and Correction

	10. Revision History
	CONTACT

